These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 12601790)
1. Computer simulation studies of the fidelity of DNA polymerases. Florián J; Goodman MF; Warshel A Biopolymers; 2003 Mar; 68(3):286-99. PubMed ID: 12601790 [TBL] [Abstract][Full Text] [Related]
2. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase. Florián J; Goodman MF; Warshel A J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086 [TBL] [Abstract][Full Text] [Related]
3. Simulating the effect of DNA polymerase mutations on transition-state energetics and fidelity: evaluating amino acid group contribution and allosteric coupling for ionized residues in human pol beta. Xiang Y; Oelschlaeger P; Florián J; Goodman MF; Warshel A Biochemistry; 2006 Jun; 45(23):7036-48. PubMed ID: 16752894 [TBL] [Abstract][Full Text] [Related]
4. Free energy simulations of uncatalyzed DNA replication fidelity: structure and stability of T.G and dTTP.G terminal DNA mismatches flanked by a single dangling nucleotide. Bren U; Martínek V; Florian J J Phys Chem B; 2006 Jun; 110(21):10557-66. PubMed ID: 16722767 [TBL] [Abstract][Full Text] [Related]
5. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping. Xiang Y; Warshel A J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038 [TBL] [Abstract][Full Text] [Related]
6. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. DeLucia AM; Grindley ND; Joyce CM Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324 [TBL] [Abstract][Full Text] [Related]
7. Altering DNA polymerase incorporation fidelity by distorting the dNTP binding pocket with a bulky carcinogen-damaged template. Yan SF; Wu M; Geacintov NE; Broyde S Biochemistry; 2004 Jun; 43(24):7750-65. PubMed ID: 15196018 [TBL] [Abstract][Full Text] [Related]
8. Computer simulations of protein functions: searching for the molecular origin of the replication fidelity of DNA polymerases. Florián J; Goodman MF; Warshel A Proc Natl Acad Sci U S A; 2005 May; 102(19):6819-24. PubMed ID: 15863620 [TBL] [Abstract][Full Text] [Related]
10. DNA polymerases lose their grip. Beard WA; Wilson SH Nat Struct Biol; 2001 Nov; 8(11):915-7. PubMed ID: 11685231 [No Abstract] [Full Text] [Related]
11. Snapshots of a Y-family DNA polymerase in replication: substrate-induced conformational transitions and implications for fidelity of Dpo4. Wong JH; Fiala KA; Suo Z; Ling H J Mol Biol; 2008 May; 379(2):317-30. PubMed ID: 18448122 [TBL] [Abstract][Full Text] [Related]
12. Pre-steady-state kinetic studies of the fidelity of Sulfolobus solfataricus P2 DNA polymerase IV. Fiala KA; Suo Z Biochemistry; 2004 Feb; 43(7):2106-15. PubMed ID: 14967050 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of nucleotide incorporation in DNA polymerase beta. Radhakrishnan R Biochem Biophys Res Commun; 2006 Sep; 347(3):626-33. PubMed ID: 16842743 [TBL] [Abstract][Full Text] [Related]
14. Framework model for DNA polymerases. Keller DJ; Brozik JA Biochemistry; 2005 May; 44(18):6877-88. PubMed ID: 15865433 [TBL] [Abstract][Full Text] [Related]
16. Transition state analogues for nucleotidyl transfer reactions: Structure and stability of pentavalent vanadate and phosphate ester dianions. Borden J; Crans DC; Florián J J Phys Chem B; 2006 Aug; 110(30):14988-99. PubMed ID: 16869614 [TBL] [Abstract][Full Text] [Related]
17. Pre-steady-state kinetic studies of the fidelity and mechanism of polymerization catalyzed by truncated human DNA polymerase lambda. Fiala KA; Abdel-Gawad W; Suo Z Biochemistry; 2004 Jun; 43(21):6751-62. PubMed ID: 15157109 [TBL] [Abstract][Full Text] [Related]
18. Structure and function of 2:1 DNA polymerase.DNA complexes. Tang KH; Tsai MD J Cell Physiol; 2008 Aug; 216(2):315-20. PubMed ID: 18393274 [TBL] [Abstract][Full Text] [Related]
19. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs. Lee CH; Chandani S; Loechler EL J Mol Graph Model; 2006 Sep; 25(1):87-102. PubMed ID: 16386932 [TBL] [Abstract][Full Text] [Related]
20. Varying DNA base-pair size in subangstrom increments: evidence for a loose, not large, active site in low-fidelity Dpo4 polymerase. Mizukami S; Kim TW; Helquist SA; Kool ET Biochemistry; 2006 Mar; 45(9):2772-8. PubMed ID: 16503632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]