These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12601790)

  • 21. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro.
    Bassett E; Vaisman A; Havener JM; Masutani C; Hanaoka F; Chaney SG
    Biochemistry; 2003 Dec; 42(48):14197-206. PubMed ID: 14640687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations.
    Kato M; Pisliakov AV; Warshel A
    Proteins; 2006 Sep; 64(4):829-44. PubMed ID: 16779836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A three dimensional (3-D) physical model of DNA polymerase movement in DNA replication.
    Cheng K; Zou CH
    Biomed Sci Instrum; 2003; 39():83-8. PubMed ID: 12724873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating hydroxide anion interfacial activity by classical and multistate empirical valence bond molecular dynamics simulations.
    Wick CD; Dang LX
    J Phys Chem A; 2009 Jun; 113(22):6356-64. PubMed ID: 19391589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Replication of a cis-syn thymine dimer at atomic resolution.
    Ling H; Boudsocq F; Plosky BS; Woodgate R; Yang W
    Nature; 2003 Aug; 424(6952):1083-7. PubMed ID: 12904819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model for forward polymerization and switching transition between polymerase and exonuclease sites by DNA polymerase molecular motors.
    Xie P
    Arch Biochem Biophys; 2007 Jan; 457(1):73-84. PubMed ID: 17055996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus.
    Kim SW; Kim DU; Kim JK; Kang LW; Cho HS
    Int J Biol Macromol; 2008 May; 42(4):356-61. PubMed ID: 18355915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mechanism for all polymerases.
    Steitz TA
    Nature; 1998 Jan; 391(6664):231-2. PubMed ID: 9440683
    [No Abstract]   [Full Text] [Related]  

  • 30. [Chemical reactions catalyzed by DNA polymerases].
    Kraevskiĭ AA
    Bioorg Khim; 2000 Jan; 26(1):4-11. PubMed ID: 10806546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biasing the center of charge in molecular dynamics simulations with empirical valence bond models: free energetics of an excess proton in a water droplet.
    Köfinger J; Dellago C
    J Phys Chem B; 2008 Feb; 112(8):2349-56. PubMed ID: 18247589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the active site of DNA polymerase beta by molecular dynamics and quantum chemical calculation.
    Rittenhouse RC; Apostoluk WK; Miller JH; Straatsma TP
    Proteins; 2003 Nov; 53(3):667-82. PubMed ID: 14579358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta.
    Bojin MD; Schlick T
    J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of the reverse rate of the conformational step to polymerase beta fidelity.
    Bakhtina M; Roettger MP; Tsai MD
    Biochemistry; 2009 Apr; 48(14):3197-208. PubMed ID: 19231836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases.
    Iyer LM; Abhiman S; Aravind L
    Biol Direct; 2008 Oct; 3():39. PubMed ID: 18834537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prechemistry versus preorganization in DNA replication fidelity.
    Ram Prasad B; Warshel A
    Proteins; 2011 Oct; 79(10):2900-19. PubMed ID: 21905114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.
    Oertell K; Harcourt EM; Mohsen MG; Petruska J; Kool ET; Goodman MF
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):E2277-85. PubMed ID: 27044101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bumps in the road: how replicative DNA polymerases see DNA damage.
    Hogg M; Wallace SS; Doublié S
    Curr Opin Struct Biol; 2005 Feb; 15(1):86-93. PubMed ID: 15718138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational study of the force dependence of phosphoryl transfer during DNA synthesis by a high fidelity polymerase.
    Venkatramani R; Radhakrishnan R
    Phys Rev Lett; 2008 Feb; 100(8):088102. PubMed ID: 18352668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uniform Free-Energy Profiles of the P-O Bond Formation and Cleavage Reactions Catalyzed by DNA Polymerases β and λ.
    Klvaňa M; Bren U; Florián J
    J Phys Chem B; 2016 Dec; 120(51):13017-13030. PubMed ID: 27992186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.