BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 12601793)

  • 1. The physics and bioinformatics of binding and folding-an energy landscape perspective.
    Papoian GA; Wolynes PG
    Biopolymers; 2003 Mar; 68(3):333-49. PubMed ID: 12601793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying native-like protein structures using physics-based potentials.
    Dominy BN; Brooks CL
    J Comput Chem; 2002 Jan; 23(1):147-60. PubMed ID: 11913380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes.
    Levy Y; Cho SS; Onuchic JN; Wolynes PG
    J Mol Biol; 2005 Mar; 346(4):1121-45. PubMed ID: 15701522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein binding versus protein folding: the role of hydrophilic bridges in protein associations.
    Xu D; Lin SL; Nussinov R
    J Mol Biol; 1997 Jan; 265(1):68-84. PubMed ID: 8995525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the contribution of water-mediated interactions to protein-complex stability.
    Reichmann D; Phillip Y; Carmi A; Schreiber G
    Biochemistry; 2008 Jan; 47(3):1051-60. PubMed ID: 18161993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding pathway dependence on energetic frustration and interaction heterogeneity for a three-dimensional hydrophobic protein model.
    Garcia LG; Araújo AF
    Proteins; 2006 Jan; 62(1):46-63. PubMed ID: 16292745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.
    Liu S; Zhang C; Zhou H; Zhou Y
    Proteins; 2004 Jul; 56(1):93-101. PubMed ID: 15162489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of coupled folding and binding of an intrinsically disordered protein.
    Sugase K; Dyson HJ; Wright PE
    Nature; 2007 Jun; 447(7147):1021-5. PubMed ID: 17522630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the charge space of protein-protein association: a proteomic study.
    Shaul Y; Schreiber G
    Proteins; 2005 Aug; 60(3):341-52. PubMed ID: 15887221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of physics-based methodology for exploring the conformational energy landscape of proteins.
    Scheraga HA; Pillardy J; Liwo A; Lee J; Czaplewski C; Ripoll DR; Wedemeyer WJ; Arnautova YA
    J Comput Chem; 2002 Jan; 23(1):28-34. PubMed ID: 11913387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular principles of the interactions of disordered proteins.
    Mészáros B; Tompa P; Simon I; Dosztányi Z
    J Mol Biol; 2007 Sep; 372(2):549-61. PubMed ID: 17681540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The folding landscape of an alpha-lytic protease variant reveals the role of a conserved beta-hairpin in the development of kinetic stability.
    Truhlar SM; Agard DA
    Proteins; 2005 Oct; 61(1):105-14. PubMed ID: 16044461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A; Bagchi B
    J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy landscape and folding mechanism of a beta-hairpin in explicit water: a replica exchange molecular dynamics study.
    Nguyen PH; Stock G; Mittag E; Hu CK; Li MS
    Proteins; 2005 Dec; 61(4):795-808. PubMed ID: 16240446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for describing topological frustration in models of protein folding.
    Norcross TS; Yeates TO
    J Mol Biol; 2006 Sep; 362(3):605-21. PubMed ID: 16930616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of water mediated interactions in protein-protein recognition landscapes.
    Papoian GA; Ulander J; Wolynes PG
    J Am Chem Soc; 2003 Jul; 125(30):9170-8. PubMed ID: 15369374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent successes of the energy landscape theory of protein folding and function.
    Wolynes PG
    Q Rev Biophys; 2005 Nov; 38(4):405-10. PubMed ID: 16934172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection.
    Scalley-Kim M; Baker D
    J Mol Biol; 2004 Apr; 338(3):573-83. PubMed ID: 15081814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.