These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 12601798)
1. Acetylcholinesterase in motion: visualizing conformational changes in crystal structures by a morphing procedure. Zeev-Ben-Mordehai T; Silman I; Sussman JL Biopolymers; 2003 Mar; 68(3):395-406. PubMed ID: 12601798 [TBL] [Abstract][Full Text] [Related]
2. Conformational flexibility in the peripheral site of Torpedo californica acetylcholinesterase revealed by the complex structure with a bifunctional inhibitor. Colletier JP; Sanson B; Nachon F; Gabellieri E; Fattorusso C; Campiani G; Weik M J Am Chem Soc; 2006 Apr; 128(14):4526-7. PubMed ID: 16594661 [TBL] [Abstract][Full Text] [Related]
3. Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge. Rydberg EH; Brumshtein B; Greenblatt HM; Wong DM; Shaya D; Williams LD; Carlier PR; Pang YP; Silman I; Sussman JL J Med Chem; 2006 Sep; 49(18):5491-500. PubMed ID: 16942022 [TBL] [Abstract][Full Text] [Related]
4. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design. Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167 [TBL] [Abstract][Full Text] [Related]
5. Structural determinants of Torpedo californica acetylcholinesterase inhibition by the novel and orally active carbamate based anti-alzheimer drug ganstigmine (CHF-2819). Bartolucci C; Siotto M; Ghidini E; Amari G; Bolzoni PT; Racchi M; Villetti G; Delcanale M; Lamba D J Med Chem; 2006 Aug; 49(17):5051-8. PubMed ID: 16913695 [TBL] [Abstract][Full Text] [Related]
6. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors. Mizutani MY; Itai A J Med Chem; 2004 Sep; 47(20):4818-28. PubMed ID: 15369385 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics of mouse acetylcholinesterase complexed with huperzine A. Tara S; Helms V; Straatsma TP; McCammon JA Biopolymers; 1999 Oct; 50(4):347-59. PubMed ID: 10423544 [TBL] [Abstract][Full Text] [Related]
9. "Back door" opening implied by the crystal structure of a carbamoylated acetylcholinesterase. Bartolucci C; Perola E; Cellai L; Brufani M; Lamba D Biochemistry; 1999 May; 38(18):5714-9. PubMed ID: 10231521 [TBL] [Abstract][Full Text] [Related]
10. Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime. Sanson B; Nachon F; Colletier JP; Froment MT; Toker L; Greenblatt HM; Sussman JL; Ashani Y; Masson P; Silman I; Weik M J Med Chem; 2009 Dec; 52(23):7593-603. PubMed ID: 19642642 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Harel M; Kryger G; Rosenberry TL; Mallender WD; Lewis T; Fletcher RJ; Guss JM; Silman I; Sussman JL Protein Sci; 2000 Jun; 9(6):1063-72. PubMed ID: 10892800 [TBL] [Abstract][Full Text] [Related]
12. Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking. Pilger C; Bartolucci C; Lamba D; Tropsha A; Fels G J Mol Graph Model; 2001; 19(3-4):288-96, 374-8. PubMed ID: 11449566 [TBL] [Abstract][Full Text] [Related]
13. Induced fit in mouse acetylcholinesterase upon binding a femtomolar inhibitor: a molecular dynamics study. Senapati S; Bui JM; McCammon JA J Med Chem; 2005 Dec; 48(26):8155-62. PubMed ID: 16366597 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of cholinesterase inhibition by inorganic mercury. Frasco MF; Colletier JP; Weik M; Carvalho F; Guilhermino L; Stojan J; Fournier D FEBS J; 2007 Apr; 274(7):1849-61. PubMed ID: 17355286 [TBL] [Abstract][Full Text] [Related]
15. Conformational energy landscape of the acyl pocket loop in acetylcholinesterase: a Monte Carlo-generalized Born model study. Carlacci L; Millard CB; Olson MA Biophys Chem; 2004 Oct; 111(2):143-57. PubMed ID: 15381312 [TBL] [Abstract][Full Text] [Related]
16. 3D QSAR studies of AChE inhibitors based on molecular docking scores and CoMFA. Akula N; Lecanu L; Greeson J; Papadopoulos V Bioorg Med Chem Lett; 2006 Dec; 16(24):6277-80. PubMed ID: 17049234 [TBL] [Abstract][Full Text] [Related]
17. Exploiting protein fluctuations at the active-site gorge of human cholinesterases: further optimization of the design strategy to develop extremely potent inhibitors. Butini S; Campiani G; Borriello M; Gemma S; Panico A; Persico M; Catalanotti B; Ros S; Brindisi M; Agnusdei M; Fiorini I; Nacci V; Novellino E; Belinskaya T; Saxena A; Fattorusso C J Med Chem; 2008 Jun; 51(11):3154-70. PubMed ID: 18479118 [TBL] [Abstract][Full Text] [Related]
18. Crystal structures of acetylcholinesterase in complex with HI-6, Ortho-7 and obidoxime: structural basis for differences in the ability to reactivate tabun conjugates. Ekström F; Pang YP; Boman M; Artursson E; Akfur C; Börjegren S Biochem Pharmacol; 2006 Aug; 72(5):597-607. PubMed ID: 16876764 [TBL] [Abstract][Full Text] [Related]
19. Lessons from functional analysis of AChE covalent and noncovalent inhibitors for design of AD therapeutic agents. Barak D; Ordentlich A; Kaplan D; Kronman C; Velan B; Shafferman A Chem Biol Interact; 2005 Dec; 157-158():219-26. PubMed ID: 16289124 [TBL] [Abstract][Full Text] [Related]
20. Stereoselective inactivation of Torpedo californica acetylcholinesterase by isomalathion: inhibitory reactions with (1R)- and (1S)-isomers proceed by different mechanisms. Doorn JA; Thompson CM; Christner RB; Richardson RJ Chem Res Toxicol; 2003 Aug; 16(8):958-65. PubMed ID: 12924923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]