BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 12602501)

  • 1. Effects of hyperammonemia and liver failure on glutamatergic neurotransmission.
    Monfort P; Muñoz MD; ElAyadi A; Kosenko E; Felipo V
    Metab Brain Dis; 2002 Dec; 17(4):237-50. PubMed ID: 12602501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy.
    Cauli O; Rodrigo R; Llansola M; Montoliu C; Monfort P; Piedrafita B; El Mlili N; Boix J; Agustí A; Felipo V
    Metab Brain Dis; 2009 Mar; 24(1):69-80. PubMed ID: 19085094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain regional alterations in the modulation of the glutamate-nitric oxide-cGMP pathway in liver cirrhosis. Role of hyperammonemia and cell types involved.
    Rodrigo R; Felipo V
    Neurochem Int; 2006; 48(6-7):472-7. PubMed ID: 16517021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia.
    Natesan V; Mani R; Arumugam R
    Biomed Pharmacother; 2016 Jul; 81():192-202. PubMed ID: 27261594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamine synthetase in brain: effect of ammonia.
    Suárez I; Bodega G; Fernández B
    Neurochem Int; 2002; 41(2-3):123-42. PubMed ID: 12020613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic hyperammonemia, glutamatergic neurotransmission and neurological alterations.
    Llansola M; Montoliu C; Cauli O; Hernández-Rabaza V; Agustí A; Cabrera-Pastor A; Giménez-Garzó C; González-Usano A; Felipo V
    Metab Brain Dis; 2013 Jun; 28(2):151-4. PubMed ID: 23010935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperammonemia alters glycinergic neurotransmission and modulation of the glutamate-nitric oxide-cGMP pathway by extracellular glycine in cerebellum in vivo.
    Cabrera-Pastor A; Taoro-Gonzalez L; Felipo V
    J Neurochem; 2016 May; 137(4):539-48. PubMed ID: 26875688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic hyperammonemia alters protein phosphorylation and glutamate receptor-associated signal transduction in brain.
    Corbalán R; Hernández-Viadel M; Llansola M; Montoliu C; Felipo V
    Neurochem Int; 2002; 41(2-3):103-8. PubMed ID: 12020610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy.
    Llansola M; Montoliu C; Agusti A; Hernandez-Rabaza V; Cabrera-Pastor A; Gomez-Gimenez B; Malaguarnera M; Dadsetan S; Belghiti M; Garcia-Garcia R; Balzano T; Taoro L; Felipo V
    Neurochem Int; 2015 Sep; 88():15-9. PubMed ID: 25447766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of extracellular cGMP and of hyperammonemia in the impairment of learning in rats with chronic hepatic failure. Therapeutic implications.
    Erceg S; Monfort P; Cauli O; Montoliu C; Llansola M; Piedrafita B; Felipo V
    Neurochem Int; 2006; 48(6-7):441-6. PubMed ID: 16497413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate transporter and receptor function in disorders of ammonia metabolism.
    Butterworth RF
    Ment Retard Dev Disabil Res Rev; 2001; 7(4):276-9. PubMed ID: 11754522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission.
    Norenberg MD; Huo Z; Neary JT; Roig-Cantesano A
    Glia; 1997 Sep; 21(1):124-33. PubMed ID: 9298855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation by extracellular cGMP.
    Cabrera-Pastor A; Arenas YM; Taoro-Gonzalez L; Montoliu C; Felipo V
    Neuropharmacology; 2019 Dec; 161():107496. PubMed ID: 30641078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in soluble guanylate cyclase content and modulation by nitric oxide in liver disease.
    Rodrigo R; Montoliu C; Chatauret N; Butterworth R; Behrends S; Del Olmo JA; Serra MA; Rodrigo JM; Erceg S; Felipo V
    Neurochem Int; 2004 Nov; 45(6):947-53. PubMed ID: 15312989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate transporters in hyperammonemia.
    Butterworth RF
    Neurochem Int; 2002; 41(2-3):81-5. PubMed ID: 12020607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate uptake.
    Danbolt NC
    Prog Neurobiol; 2001 Sep; 65(1):1-105. PubMed ID: 11369436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blocking glycine receptors reduces neuroinflammation and restores neurotransmission in cerebellum through ADAM17-TNFR1-NF-κβ pathway.
    Arenas YM; Cabrera-Pastor A; Juciute N; Mora-Navarro E; Felipo V
    J Neuroinflammation; 2020 Sep; 17(1):269. PubMed ID: 32917219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of Glutamate and Glutamine Transport in Ammonia Neurotoxicity: State of the Art and Question Marks.
    Dabrowska K; Skowronska K; Popek M; Obara-Michlewska M; Albrecht J; Zielinska M
    Endocr Metab Immune Disord Drug Targets; 2018; 18(4):306-315. PubMed ID: 29256360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA receptors in hyperammonemia and hepatic encephalopathy.
    Llansola M; Rodrigo R; Monfort P; Montoliu C; Kosenko E; Cauli O; Piedrafita B; El Mlili N; Felipo V
    Metab Brain Dis; 2007 Dec; 22(3-4):321-35. PubMed ID: 17701332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy.
    Felipo V
    World J Gastroenterol; 2006 Dec; 12(48):7737-43. PubMed ID: 17203513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.