These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 12602794)
1. Lipophilicity parameter from high-performance liquid chromatography on an immobilized artificial membrane column and its relationships to bioactivity of the group of 2,4-dihydroxythiobenzanilides. Jóźwiak K; Szumiło H; Senczyna B Acta Pol Pharm; 2002; 59(5):341-6. PubMed ID: 12602794 [TBL] [Abstract][Full Text] [Related]
2. Comparison between immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone antibacterial agents. Barbato F; Cirocco V; Grumetto L; Immacolata La Rotonda M Eur J Pharm Sci; 2007 Aug; 31(5):288-97. PubMed ID: 17540545 [TBL] [Abstract][Full Text] [Related]
3. Investigation of lipophilicity of anticancer-active thioquinoline derivatives. Bajda M; Boryczka S; Wietrzyk J; Malawska B Biomed Chromatogr; 2007 Feb; 21(2):123-31. PubMed ID: 17120300 [TBL] [Abstract][Full Text] [Related]
4. Determination of lipophilic descriptors of antihelmintic 6,7-diaryl-pteridine derivatives useful for bioactivity predictions. Reta M; Giacomelli L; Santo M; Cattana R; Silber JJ; Ochoa C; Rodriguez M; Chana A Biomed Chromatogr; 2003 Sep; 17(6):365-72. PubMed ID: 13680846 [TBL] [Abstract][Full Text] [Related]
5. Capillary electrochromatography as a new tool to assess drug affinity for membrane phospholipids. Barbato F; Grumetto L; Carpentiero C; Rocco A; Fanali S J Pharm Biomed Anal; 2011 Apr; 54(5):893-9. PubMed ID: 21168987 [TBL] [Abstract][Full Text] [Related]
6. Use of reversed-phase high-performance liquid chromatography in QSAR analysis of 2,4-dihydroxythiobenzanilide analogues. Jóźwiak K; Szumiło H; Senczyna B; Niewiadomy A SAR QSAR Environ Res; 1999 Dec; 10(6):509-32. PubMed ID: 10674290 [TBL] [Abstract][Full Text] [Related]
7. Different retention behavior of structurally diverse basic and neutral drugs in immobilized artificial membrane and reversed-phase high performance liquid chromatography: comparison with octanol-water partitioning. Vrakas D; Giaginis C; Tsantili-Kakoulidou A J Chromatogr A; 2006 May; 1116(1-2):158-64. PubMed ID: 16595136 [TBL] [Abstract][Full Text] [Related]
8. Estimation of phospholipophilicity of 1-[3-(arylpiperazin-1-yl)-propyl]-pyrrolidin-2-one derivatives on immobilized artificial membrane stationary phase and its correlation with biological data. Kulig K; Malawska B Biomed Chromatogr; 2006 Nov; 20(11):1129-35. PubMed ID: 16708395 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of lipophilicity of N-arylhydroxamic acids by reversed phase-high performance liquid chromatographic method and self-organizing molecular field analysis. Rajwade RP; Pande R Anal Chim Acta; 2008 Dec; 630(2):205-10. PubMed ID: 19012833 [TBL] [Abstract][Full Text] [Related]
10. Chromatographic estimation of drug disposition properties by means of immobilized artificial membranes (IAM) and C18 columns. Lázaro E; Ràfols C; Abraham MH; Rosés M J Med Chem; 2006 Aug; 49(16):4861-70. PubMed ID: 16884298 [TBL] [Abstract][Full Text] [Related]
11. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols. Stępnik KE; Malinowska I J Chromatogr A; 2013 Apr; 1286():127-36. PubMed ID: 23506703 [TBL] [Abstract][Full Text] [Related]
12. Prediction of drug-membrane interactions by IAM-HPLC: effects of different phospholipid stationary phases on the partition of bases. Barbato F; di Martino G; Grumetto L; La Rotonda MI Eur J Pharm Sci; 2004 Jul; 22(4):261-9. PubMed ID: 15196582 [TBL] [Abstract][Full Text] [Related]
13. Retention of barbituric acid derivatives on immobilized artificial membrane stationary phase and its correlation with biological activity. Kepczyńska E; Bojarski J; Haber P; Kaliszan R Biomed Chromatogr; 2000 Jun; 14(4):256-60. PubMed ID: 10861737 [TBL] [Abstract][Full Text] [Related]
14. Relationship between immobilized artificial membrane chromatographic retention and human oral absorption of structurally diverse drugs. Kotecha J; Shah S; Rathod I; Subbaiah G Int J Pharm; 2007 Mar; 333(1-2):127-35. PubMed ID: 17095172 [TBL] [Abstract][Full Text] [Related]
15. Lipophilic and polar interaction forces between acidic drugs and membrane phospholipids encoded in IAM-HPLC indexes: their role in membrane partition and relationships with BBB permeation data. Grumetto L; Carpentiero C; Di Vaio P; Frecentese F; Barbato F J Pharm Biomed Anal; 2013 Mar; 75():165-72. PubMed ID: 23261809 [TBL] [Abstract][Full Text] [Related]
16. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor. Li J; Sun J; Cui S; He Z J Chromatogr A; 2006 Nov; 1132(1-2):174-82. PubMed ID: 16919656 [TBL] [Abstract][Full Text] [Related]
17. Electrostatic interactions and ionization effect in immobilized artificial membrane retention. A comparative study with octanol-water partitioning. Vrakas D; Giaginis C; Tsantili-Kakoulidou A J Chromatogr A; 2008 Apr; 1187(1-2):67-78. PubMed ID: 18291408 [TBL] [Abstract][Full Text] [Related]
18. Antifungal properties of new series of quinoline derivatives. Musiol R; Jampilek J; Buchta V; Silva L; Niedbala H; Podeszwa B; Palka A; Majerz-Maniecka K; Oleksyn B; Polanski J Bioorg Med Chem; 2006 May; 14(10):3592-8. PubMed ID: 16458522 [TBL] [Abstract][Full Text] [Related]
19. Correlation of fungostatic activity with log P and sigma parameters in the group of thiobenzanilides. Jóźwiak K; Szumiło H Acta Pol Pharm; 2000 Nov; 57 Suppl():82-4. PubMed ID: 11293275 [TBL] [Abstract][Full Text] [Related]
20. [Comparative study of lipophilicity from immobilized artificial chromatography and n-octanol/buffer systems]. Sun J; Cheng G; He ZG; Wang SJ Yao Xue Xue Bao; 2003 Oct; 38(10):791-4. PubMed ID: 14730907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]