BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12602923)

  • 1. Concurrent exposure to heat shock and H7 synergizes to trigger breast cancer cell apoptosis while sparing normal cells.
    Xia W; Hardy L; Liu L; Zhao S; Goodman M; Voellmy R; Spector NL
    Breast Cancer Res Treat; 2003 Feb; 77(3):233-43. PubMed ID: 12602923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting heat shock proteins by phenethyl isothiocyanate results in cell-cycle arrest and apoptosis of human breast cancer cells.
    Sarkars R; Mukherjee S; Roy M
    Nutr Cancer; 2013; 65(3):480-93. PubMed ID: 23530648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity.
    Menendez JA; Vellon L; Colomer R; Lupu R
    Int J Cancer; 2005 May; 115(1):19-35. PubMed ID: 15657900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins.
    Sarkar R; Mukherjee S; Biswas J; Roy M
    Biochem Biophys Res Commun; 2012 Oct; 427(1):80-5. PubMed ID: 22975350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical requirements for the expression of heat shock protein 72 kda in human breast cancer MCF-7 cells.
    Kiang JG; Gist ID; Tsokos GC
    Mol Cell Biochem; 1999 Sep; 199(1-2):179-88. PubMed ID: 10544966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock alters the composition of heteromeric steroid receptor complexes and enhances receptor activity in vivo.
    Edwards DP; Estes PA; Fadok VA; Bona BJ; Oñate S; Nordeen SK; Welch WJ
    Biochemistry; 1992 Mar; 31(9):2482-91. PubMed ID: 1312348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of heat shock protein 72 kDa and 90 kDa in human breast cancer MDA-MB-231 cells.
    Kiang JG; Gist ID; Tsokos GC
    Mol Cell Biochem; 2000 Jan; 204(1-2):169-78. PubMed ID: 10718636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of expression of heat shock proteins and apoptosis by Flueggea leucopyrus (Willd) decoction in three breast cancer phenotypes.
    Mendis AS; Thabrew I; Samarakoon SR; Tennekoon KH
    BMC Complement Altern Med; 2015 Nov; 15():404. PubMed ID: 26553005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock proteins increase resistance to apoptosis.
    Samali A; Cotter TG
    Exp Cell Res; 1996 Feb; 223(1):163-70. PubMed ID: 8635489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular chaperones in mammary cancer growth and breast tumor therapy.
    Calderwood SK; Gong J
    J Cell Biochem; 2012 Apr; 113(4):1096-103. PubMed ID: 22105880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II.
    Ravi R; Bedi A
    Cancer Res; 2002 Aug; 62(15):4180-5. PubMed ID: 12154014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting heat shock proteins in cancer.
    Jego G; Hazoumé A; Seigneuric R; Garrido C
    Cancer Lett; 2013 May; 332(2):275-85. PubMed ID: 21078542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor.
    Tseng PH; Wang YC; Weng SC; Weng JR; Chen CS; Brueggemeier RW; Shapiro CL; Chen CY; Dunn SE; Pollak M; Chen CS
    Mol Pharmacol; 2006 Nov; 70(5):1534-41. PubMed ID: 16887935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eradication of breast cancer xenografts by hyperthermic suicide gene therapy under the control of the heat shock protein promoter.
    Braiden V; Ohtsuru A; Kawashita Y; Miki F; Sawada T; Ito M; Cao Y; Kaneda Y; Koji T; Yamashita S
    Hum Gene Ther; 2000 Dec; 11(18):2453-63. PubMed ID: 11119417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock factor-1 protein in heat shock factor-1 gene-transfected human epidermoid A431 cells requires phosphorylation before inducing heat shock protein-70 production.
    Ding XZ; Tsokos GC; Kiang JG
    J Clin Invest; 1997 Jan; 99(1):136-43. PubMed ID: 9011567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy.
    Vargas-Roig LM; Gago FE; Tello O; Aznar JC; Ciocca DR
    Int J Cancer; 1998 Oct; 79(5):468-75. PubMed ID: 9761114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma.
    Heimberger T; Andrulis M; Riedel S; Stühmer T; Schraud H; Beilhack A; Bumm T; Bogen B; Einsele H; Bargou RC; Chatterjee M
    Br J Haematol; 2013 Feb; 160(4):465-76. PubMed ID: 23252346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock protects HCT116 and H460 cells from TRAIL-induced apoptosis.
    Ozören N; El-Deiry W
    Exp Cell Res; 2002 Dec; 281(2):175-81. PubMed ID: 12460647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis: role of heat shock proteins and dissecting effects of hyperthermia.
    Pelz JO; Vetterlein M; Grimmig T; Kerscher AG; Moll E; Lazariotou M; Matthes N; Faber M; Germer CT; Waaga-Gasser AM; Gasser M
    Ann Surg Oncol; 2013 Apr; 20(4):1105-13. PubMed ID: 23456378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.