These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12602951)

  • 1. Fast estimation of hydrogen-bonding donor and acceptor propensities: a GMIPp study.
    Salichs A; López M; Segarra V; Orozco M; Luque FJ
    J Comput Aided Mol Des; 2002; 16(8-9):569-83. PubMed ID: 12602951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the intrinsic hydrogen bond acceptor strength of chemical substances from molecular structure.
    Schwöbel J; Ebert RU; Kühne R; Schüürmann G
    J Phys Chem A; 2009 Sep; 113(37):10104-12. PubMed ID: 19694415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical hydrogen bonding parameters for drug design.
    Gancia E; Montana JG; Manallack DT
    J Mol Graph Model; 2001; 19(3-4):349-62. PubMed ID: 11449575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature of the attractive interaction between proton acceptors and organic ring systems.
    Arras E; Seitsonen AP; Klappenberger F; Barth JV
    Phys Chem Chem Phys; 2012 Dec; 14(46):15995-6001. PubMed ID: 23089650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular-level understanding of ground- and excited-state O-H...O hydrogen bonding involving the tyrosine side chain: a combined high-resolution laser spectroscopy and quantum chemistry study.
    Biswal HS; Bhattacharyya S; Wategaonkar S
    Chemphyschem; 2013 Dec; 14(18):4165-76. PubMed ID: 24203576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the intrinsic hydrogen bond acceptor strength of organic compounds by local molecular parameters.
    Schwöbel J; Ebert RU; Kühne R; Schüürmann G
    J Chem Inf Model; 2009 Apr; 49(4):956-62. PubMed ID: 19296715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bonding properties of galanthamine: an investigation through crystallographic database observations and computational chemistry.
    Koné S; Galland N; Bamba el HS; Le Questel JY
    Acta Crystallogr B; 2008 Jun; 64(Pt 3):338-47. PubMed ID: 18490824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic ab initio study of 15N-15N and 15N-1H spin-spin coupling constants across N-H+-N hydrogen bonds: predicting N-N and N-H coupling constants and relating them to hydrogen bond type.
    Del Bene JE; Elguero J
    J Phys Chem A; 2006 Jun; 110(23):7496-502. PubMed ID: 16759141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization charge densities provide a predictive quantification of hydrogen bond energies.
    Klamt A; Reinisch J; Eckert F; Hellweg A; Diedenhofen M
    Phys Chem Chem Phys; 2012 Jan; 14(2):955-63. PubMed ID: 22120043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the H bond donor strength of -OH, -NH, and -CH sites by local molecular parameters.
    Schwöbel J; Ebert RU; Kühne R; Schüürmann G
    J Comput Chem; 2009 Jul; 30(9):1454-64. PubMed ID: 19037860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can quantum-mechanical calculations yield reasonable estimates of hydrogen-bonding acceptor strength? The case of hydrogen-bonded complexes of methanol.
    Koné M; Illien B; Laurence C; Graton J
    J Phys Chem A; 2011 Dec; 115(47):13975-85. PubMed ID: 22004133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical prediction of hydrogen-bond basicity pKBHX using quantum chemical topology descriptors.
    Green AJ; Popelier PL
    J Chem Inf Model; 2014 Feb; 54(2):553-61. PubMed ID: 24460383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkyl radicals as hydrogen bond acceptors: computational evidence.
    Hammerum S
    J Am Chem Soc; 2009 Jun; 131(24):8627-35. PubMed ID: 19489573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength of the Calpha H..O hydrogen bond of amino acid residues.
    Scheiner S; Kar T; Gu Y
    J Biol Chem; 2001 Mar; 276(13):9832-7. PubMed ID: 11152477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.
    Zhao H; Tang S; Xu X; Du L
    Int J Mol Sci; 2016 Dec; 18(1):. PubMed ID: 28042825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit representation of anisotropic force constants for simulating intermolecular vibrations of multiply hydrogen-bonded systems.
    Houjou H; Koga R
    J Phys Chem A; 2008 Nov; 112(44):11256-62. PubMed ID: 18834101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct evaluation of individual hydrogen bond energy in situ in intra- and intermolecular multiple hydrogen bonds system.
    Liu C; Zhao DX; Yang ZZ
    J Comput Chem; 2012 Feb; 33(4):379-90. PubMed ID: 22170234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory investigation of hydrogen bonding effects on the oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors of anhydrous chitosan crystalline structure.
    Esrafili MD; Elmi F; Hadipour NL
    J Phys Chem A; 2007 Feb; 111(5):963-70. PubMed ID: 17266238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of molecular electrostatic potentials as hydrogen-bonding-donor parameters for QSAR studies.
    Ghafourian T; Dearden JC
    Farmaco; 2004 Jun; 59(6):473-9. PubMed ID: 15178310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.