BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 12604594)

  • 1. Dynamic regulation of histone H3 methylated at lysine 79 within a tissue-specific chromatin domain.
    Im H; Park C; Feng Q; Johnson KD; Kiekhaefer CM; Choi K; Zhang Y; Bresnick EH
    J Biol Chem; 2003 May; 278(20):18346-52. PubMed ID: 12604594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hematopoietic-specific activators establish an overlapping pattern of histone acetylation and methylation within a mammalian chromatin domain.
    Kiekhaefer CM; Grass JA; Johnson KD; Boyer ME; Bresnick EH
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14309-14. PubMed ID: 12379744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus.
    Demers C; Chaturvedi CP; Ranish JA; Juban G; Lai P; Morle F; Aebersold R; Dilworth FJ; Groudine M; Brand M
    Mol Cell; 2007 Aug; 27(4):573-84. PubMed ID: 17707229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intergenic non-coding RNA promoter required for histone modifications in the human β-globin chromatin domain.
    Debrand E; Chakalova L; Miles J; Dai YF; Goyenechea B; Dye S; Osborne CS; Horton A; Harju-Baker S; Pink RC; Caley D; Carter DRF; Peterson KR; Fraser P
    PLoS One; 2019; 14(8):e0217532. PubMed ID: 31412036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone H3 phosphorylation - a versatile chromatin modification for different occasions.
    Sawicka A; Seiser C
    Biochimie; 2012 Nov; 94(11):2193-201. PubMed ID: 22564826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential histone modifications mark mouse imprinting control regions during spermatogenesis.
    Delaval K; Govin J; Cerqueira F; Rousseaux S; Khochbin S; Feil R
    EMBO J; 2007 Feb; 26(3):720-9. PubMed ID: 17255950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone H3.3 phosphorylation amplifies stimulation-induced transcription.
    Armache A; Yang S; Martínez de Paz A; Robbins LE; Durmaz C; Cheong JQ; Ravishankar A; Daman AW; Ahimovic DJ; Klevorn T; Yue Y; Arslan T; Lin S; Panchenko T; Hrit J; Wang M; Thudium S; Garcia BA; Korb E; Armache KJ; Rothbart SB; Hake SB; Allis CD; Li H; Josefowicz SZ
    Nature; 2020 Jul; 583(7818):852-857. PubMed ID: 32699416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code.
    Pannell D; Osborne CS; Yao S; Sukonnik T; Pasceri P; Karaiskakis A; Okano M; Li E; Lipshitz HD; Ellis J
    EMBO J; 2000 Nov; 19(21):5884-94. PubMed ID: 11060039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multistep mechanism for the activation of rearrangement in the immune system.
    Ji Y; Zhang J; Lee AI; Cedar H; Bergman Y
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7557-62. PubMed ID: 12802019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond.
    Cohen LRZ; Meshorer E
    Trends Cell Biol; 2024 Apr; ():. PubMed ID: 38614918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing crosstalk in epigenetic signaling to understand disease physiology.
    Lempiäinen JK; Garcia BA
    Biochem J; 2023 Jan; 480(1):57-85. PubMed ID: 36630129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruptor of telomeric silencing 1-like (DOT1L): disclosing a new class of non-nucleoside inhibitors by means of ligand-based and structure-based approaches.
    Sabatino M; Rotili D; Patsilinakos A; Forgione M; Tomaselli D; Alby F; Arimondo PB; Mai A; Ragno R
    J Comput Aided Mol Des; 2018 Mar; 32(3):435-458. PubMed ID: 29335872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical roles of protein methyltransferases and demethylases in the regulation of embryonic stem cell fate.
    Vougiouklakis T; Nakamura Y; Saloura V
    Epigenetics; 2017; 12(12):1015-1027. PubMed ID: 29099285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The upstreams and downstreams of H3K79 methylation by DOT1L.
    Vlaming H; van Leeuwen F
    Chromosoma; 2016 Sep; 125(4):593-605. PubMed ID: 26728620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond.
    Chen CW; Armstrong SA
    Exp Hematol; 2015 Aug; 43(8):673-84. PubMed ID: 26118503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Ino80 complex prevents invasion of euchromatin into silent chromatin.
    Xue Y; Van C; Pradhan SK; Su T; Gehrke J; Kuryan BG; Kitada T; Vashisht A; Tran N; Wohlschlegel J; Peterson CL; Kurdistani SK; Carey MF
    Genes Dev; 2015 Feb; 29(4):350-5. PubMed ID: 25691465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Getting down to the core of histone modifications.
    Jack AP; Hake SB
    Chromosoma; 2014 Aug; 123(4):355-71. PubMed ID: 24789118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle.
    Kim W; Choi M; Kim JE
    Cell Cycle; 2014; 13(5):726-38. PubMed ID: 24526115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle.
    Fu H; Maunakea AK; Martin MM; Huang L; Zhang Y; Ryan M; Kim R; Lin CM; Zhao K; Aladjem MI
    PLoS Genet; 2013 Jun; 9(6):e1003542. PubMed ID: 23754963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The diverse functions of Dot1 and H3K79 methylation.
    Nguyen AT; Zhang Y
    Genes Dev; 2011 Jul; 25(13):1345-58. PubMed ID: 21724828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.