These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12604664)

  • 1. Mechanisms of renal cell repair and regeneration after acute renal failure.
    Nony PA; Schnellmann RG
    J Pharmacol Exp Ther; 2003 Mar; 304(3):905-12. PubMed ID: 12604664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in renal tubular extracellular matrix components after ischemia-reperfusion injury to the kidney.
    Walker PD
    Lab Invest; 1994 Mar; 70(3):339-45. PubMed ID: 8145528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regeneration following acute kidney damage].
    De Broe ME
    Verh K Acad Geneeskd Belg; 1998; 60(4):359-83; discussion 383-4. PubMed ID: 9883082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbic acid promotes recovery of cellular functions following toxicant-induced injury.
    Nowak G; Carter CA; Schnellmann RG
    Toxicol Appl Pharmacol; 2000 Aug; 167(1):37-45. PubMed ID: 10936077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal cell regeneration following oxidant exposure: inhibition by TGF-beta1 and stimulation by ascorbic acid.
    Nowak G; Schnellmann RG
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):175-83. PubMed ID: 9221835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between collagen IV and collagen-binding integrins in renal cell repair after sublethal injury.
    Nony PA; Schnellmann RG
    Mol Pharmacol; 2001 Dec; 60(6):1226-34. PubMed ID: 11723229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen IV promotes repair of renal cell physiological functions after toxicant injury.
    Nony PA; Nowak G; Schnellmann RG
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F443-53. PubMed ID: 11502594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Pathophysiology of acute renal failure at the cellular level].
    Schwarz C; Gruber U; Oberbauer R
    Wien Klin Wochenschr; 2000 Jan; 112(1):5-15. PubMed ID: 10689734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth factors and cytokines in acute renal failure.
    Harris RC
    Adv Ren Replace Ther; 1997 Apr; 4(2 Suppl 1):43-53. PubMed ID: 9113240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and molecular basis of renal repair in acute renal failure.
    Humes HD; Liu S
    J Lab Clin Med; 1994 Dec; 124(6):749-54. PubMed ID: 7798785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calpastatin overexpression prevents progression of S-1,2-dichlorovinyl-l-cysteine (DCVC)-initiated acute renal injury and renal failure (ARF) in diabetes.
    Dnyanmote AV; Sawant SP; Lock EA; Latendresse JR; Warbritton AA; Mehendale HM
    Toxicol Appl Pharmacol; 2006 Sep; 215(2):146-57. PubMed ID: 16546232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo and in vitro models demonstrate a role for caveolin-1 in the pathogenesis of ischaemic acute renal failure.
    Mahmoudi M; Willgoss D; Cuttle L; Yang T; Pat B; Winterford C; Endre Z; Johnson DW; Gobé GC
    J Pathol; 2003 Jul; 200(3):396-405. PubMed ID: 12845636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury.
    Herrera MB; Bussolati B; Bruno S; Fonsato V; Romanazzi GM; Camussi G
    Int J Mol Med; 2004 Dec; 14(6):1035-41. PubMed ID: 15547670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distal tubular epithelial cells of the kidney: Potential support for proximal tubular cell survival after renal injury.
    Gobe GC; Johnson DW
    Int J Biochem Cell Biol; 2007; 39(9):1551-61. PubMed ID: 17590379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapamycin delays but does not prevent recovery from acute renal failure: role of acquired tubular resistance.
    Lieberthal W; Fuhro R; Andry C; Patel V; Levine JS
    Transplantation; 2006 Jul; 82(1):17-22. PubMed ID: 16861936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential role of integrins in acute renal failure.
    Simon EE
    Nephrol Dial Transplant; 1994; 9 Suppl 4():26-33. PubMed ID: 7800264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute renal failure: growth factors, cell therapy, and gene therapy.
    Humes HD; MacKay SM; Funke AJ; Buffington DA
    Proc Assoc Am Physicians; 1997 Nov; 109(6):547-57. PubMed ID: 9394416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of repair after kidney injury.
    Menè P; Polci R; Festuccia F
    J Nephrol; 2003; 16(2):186-95. PubMed ID: 12768065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase C mediates repair of mitochondrial and transport functions after toxicant-induced injury in renal cells.
    Nowak G
    J Pharmacol Exp Ther; 2003 Jul; 306(1):157-65. PubMed ID: 12665543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetic mice are protected from normally lethal nephrotoxicity of S-1,2-dichlorovinyl-L-cysteine (DCVC): role of nephrogenic tissue repair.
    Dnyanmote AV; Sawant SP; Lock EA; Latendresse JR; Warbritton AA; Mehendale HM
    Toxicol Appl Pharmacol; 2006 Mar; 211(2):133-47. PubMed ID: 16125744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.