BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12604835)

  • 1. Discriminating redox cycling and arylation pathways of reactive chemical toxicity in trout hepatocytes.
    Schmieder PK; Tapper MA; Kolanczyk RC; Hammermeister DE; Sheedy BR; Denny JS
    Toxicol Sci; 2003 Mar; 72(1):66-76. PubMed ID: 12604835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depletion of cellular protein thiols as an indicator of arylation in isolated trout hepatocytes exposed to 1,4-benzoquinone.
    Tapper MA; Sheedy BR; Hammermeister DE; Schmieder PK
    Toxicol Sci; 2000 Jun; 55(2):327-34. PubMed ID: 10828264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes.
    Gant TW; Rao DN; Mason RP; Cohen GM
    Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.
    Ishihara Y; Shiba D; Shimamoto N
    Toxicol Appl Pharmacol; 2006 Jul; 214(2):109-17. PubMed ID: 16430935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of redox-cycling and arylating quinones on trans-plasma membrane electron transport.
    Tan AS; Berridge MV
    Biofactors; 2008; 34(3):183-90. PubMed ID: 19734119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of toxicity of naphthoquinones to isolated hepatocytes.
    Miller MG; Rodgers A; Cohen GM
    Biochem Pharmacol; 1986 Apr; 35(7):1177-84. PubMed ID: 2421729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of toxicity of 2- and 5-hydroxy-1,4-naphthoquinone; absence of a role for redox cycling in the toxicity of 2-hydroxy-1,4-naphthoquinone to isolated hepatocytes.
    d'Arcy Doherty M; Rodgers A; Cohen GM
    J Appl Toxicol; 1987 Apr; 7(2):123-9. PubMed ID: 3624767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity of menadione and related quinones in freshly isolated rat hepatocytes: effects on thiol homeostasis and energy charge.
    Toxopeus C; van Holsteijn I; Thuring JW; Blaauboer BJ; Noordhoek J
    Arch Toxicol; 1993; 67(10):674-9. PubMed ID: 8135657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of redox cycling versus arylation in quinone-induced mitochondrial dysfunction: a mechanistic approach in classifying reactive toxicants.
    Henry TR; Wallace KB
    SAR QSAR Environ Res; 1995; 4(2-3):97-108. PubMed ID: 8765905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of thiol homeostasis and adenine nucleotide metabolism in the protective effects of fructose in quinone-induced cytotoxicity in rat hepatocytes.
    Toxopeus C; van Holsteijn I; de Winther MP; van den Dobbelsteen D; Horbach GJ; Blaauboer BJ; Noordhoek J
    Biochem Pharmacol; 1994 Nov; 48(9):1682-92. PubMed ID: 7980636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone toxicity in DT-diaphorase-efficient and -deficient colon carcinoma cell lines.
    Karczewski JM; Peters JG; Noordhoek J
    Biochem Pharmacol; 1999 Jan; 57(1):27-37. PubMed ID: 9920282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of quantitative structure-toxicity relationships for the comparison of the cytotoxicity of 14 p-benzoquinone congeners in primary cultured rat hepatocytes versus PC12 cells.
    Siraki AG; Chan TS; O'Brien PJ
    Toxicol Sci; 2004 Sep; 81(1):148-59. PubMed ID: 15178806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenite causes cytotoxicity in rainbow trout (Oncorhynchus mykiss) hepatocytes by inducing oxidative stress.
    Misra S; Niyogi S
    Toxicol In Vitro; 2009 Oct; 23(7):1249-58. PubMed ID: 19651203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinone-induced inhibition of urease: elucidation of its mechanisms by probing thiol groups of the enzyme.
    Zaborska W; Krajewska B; Kot M; Karcz W
    Bioorg Chem; 2007 Jun; 35(3):233-42. PubMed ID: 17169398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of combined exposure to environmental aliphatic electrophiles from plants on Keap1/Nrf2 activation and cytotoxicity in HepG2 cells: A model of an electrophile exposome.
    Abiko Y; Aoki H; Kumagai Y
    Toxicol Appl Pharmacol; 2021 Feb; 413():115392. PubMed ID: 33428920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-activity relationships for thiol reactivity and rat or human hepatocyte toxicity induced by substituted p-benzoquinone compounds.
    Chan K; Jensen N; O'Brien PJ
    J Appl Toxicol; 2008 Jul; 28(5):608-20. PubMed ID: 17975849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relative importance of oxidative stress versus arylation in the mechanism of quinone-induced cytotoxicity to platelets.
    Seung SA; Lee JY; Lee MY; Park JS; Chung JH
    Chem Biol Interact; 1998 May; 113(2):133-44. PubMed ID: 9717514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells.
    Ludewig G; Dogra S; Glatt H
    Environ Health Perspect; 1989 Jul; 82():223-8. PubMed ID: 2792044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes.
    Stubberfield CR; Cohen GM
    Biochem Pharmacol; 1989 Aug; 38(16):2631-7. PubMed ID: 2764986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes.
    Inbaraj JJ; Chignell CF
    Chem Res Toxicol; 2004 Jan; 17(1):55-62. PubMed ID: 14727919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.