These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 12605926)
1. Novel approach to monitoring of the soil biological quality. Hofman J; Bezchlebová J; Dusek L; Dolezal L; Holoubek I; Andel P; Ansorgová A; Malý S Environ Int; 2003 Mar; 28(8):771-8. PubMed ID: 12605926 [TBL] [Abstract][Full Text] [Related]
2. Monitoring microbial biomass and respiration in different soils from the Czech Republic--a summary of results. Hofman J; Dusek L; Klánová J; Bezchlebová J; Holoubek I Environ Int; 2004 Mar; 30(1):19-30. PubMed ID: 14664861 [TBL] [Abstract][Full Text] [Related]
3. A stepwise procedure for assessment of the microbial respiratory activity of soil samples contaminated with organic compounds. Eisentraeger A; Maxam G; Rila JP; Dott W Ecotoxicol Environ Saf; 2000 Sep; 47(1):65-73. PubMed ID: 10993705 [TBL] [Abstract][Full Text] [Related]
4. The impact of the Almalyk Industrial Complex on soil chemical and biological properties. Shukurov N; Pen-Mouratov S; Steinberger Y Environ Pollut; 2005 Jul; 136(2):331-40. PubMed ID: 15840541 [TBL] [Abstract][Full Text] [Related]
5. Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs. Zhang WJ; Zhu W; Hu S J Environ Sci (China); 2005; 17(5):705-10. PubMed ID: 16312988 [TBL] [Abstract][Full Text] [Related]
6. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Liao M; Xie XM Ecotoxicol Environ Saf; 2007 Feb; 66(2):217-23. PubMed ID: 16488009 [TBL] [Abstract][Full Text] [Related]
7. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments. Khan KS; Joergensen RG Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685 [TBL] [Abstract][Full Text] [Related]
8. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils. Liu Z; He Y; Xu J; Huang P; Jilani G Environ Pollut; 2008 Mar; 152(1):163-71. PubMed ID: 17601643 [TBL] [Abstract][Full Text] [Related]
9. Microbial indicators of heavy metal contamination in urban and rural soils. Yang Y; Campbell CD; Clark L; Cameron CM; Paterson E Chemosphere; 2006 Jun; 63(11):1942-52. PubMed ID: 16310826 [TBL] [Abstract][Full Text] [Related]
10. The use of microorganisms in ecological soil classification and assessment concepts. Winding A; Hund-Rinke K; Rutgers M Ecotoxicol Environ Saf; 2005 Oct; 62(2):230-48. PubMed ID: 15925407 [TBL] [Abstract][Full Text] [Related]
11. Labile substrates quality as the main driving force of microbial mineralization activity in a poplar plantation soil under elevated CO2 and nitrogen fertilization. Lagomarsino A; Moscatelli MC; De Angelis P; Grego S Sci Total Environ; 2006 Dec; 372(1):256-65. PubMed ID: 17023027 [TBL] [Abstract][Full Text] [Related]
12. The influence of soil pollution on soil microbial biomass and nematode community structure in Navoiy Industrial Park, Uzbekistan. Shukurov N; Pen-Mouratov S; Steinberger Y Environ Int; 2006 Jan; 32(1):1-11. PubMed ID: 16143397 [TBL] [Abstract][Full Text] [Related]
13. Functional microbial diversity of the railway track bed. Cederlund H; Thierfelder T; Stenström J Sci Total Environ; 2008 Jul; 397(1-3):205-14. PubMed ID: 18406446 [TBL] [Abstract][Full Text] [Related]
14. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site. Sahoo PK; Bhattacharyya P; Tripathy S; Equeenuddin SM; Panigrahi MK J Hazard Mater; 2010 Jul; 179(1-3):966-75. PubMed ID: 20417031 [TBL] [Abstract][Full Text] [Related]
15. Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators. Pérez-de-Mora A; Madejón E; Cabrera F; Buegger F; Fuss R; Pritsch K; Schloter M Sci Total Environ; 2008 Nov; 406(1-2):99-107. PubMed ID: 18768212 [TBL] [Abstract][Full Text] [Related]
16. Variability of soil microbial properties: effects of sampling, handling and storage. Cernohlávková J; Jarkovský J; Nesporová M; Hofman J Ecotoxicol Environ Saf; 2009 Nov; 72(8):2102-8. PubMed ID: 19477519 [TBL] [Abstract][Full Text] [Related]
17. Variation of stabilised, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices. Dilly O; Blume HP; Sehy U; Jimenez M; Munch JC Chemosphere; 2003 Jul; 52(3):557-69. PubMed ID: 12738293 [TBL] [Abstract][Full Text] [Related]
18. Bioavailability assessment of contaminants in soils via respiration and nitrification tests. Hund-Rinke K; Simon M Environ Pollut; 2008 May; 153(2):468-75. PubMed ID: 17920739 [TBL] [Abstract][Full Text] [Related]
19. Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage (Brassica chinensis). Liao M; Chen CL; Zeng LS; Huang CY Chemosphere; 2007 Jan; 66(7):1197-205. PubMed ID: 16949632 [TBL] [Abstract][Full Text] [Related]
20. Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils. Barajas-Aceves M Bioresour Technol; 2005 Aug; 96(12):1405-14. PubMed ID: 15792589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]