BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 12606541)

  • 1. Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia.
    Gentle A; Liu Y; Martin JE; Conti GL; McBrien NA
    J Biol Chem; 2003 May; 278(19):16587-94. PubMed ID: 12606541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia.
    McBrien NA; Cornell LM; Gentle A
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2179-87. PubMed ID: 11527928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of collagen-binding integrin receptors in the mammalian sclera and their regulation during the development of myopia.
    McBrien NA; Metlapally R; Jobling AI; Gentle A
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4674-82. PubMed ID: 17065473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The time course of changes in mRNA levels in tree shrew sclera during induced myopia and recovery.
    Siegwart JT; Norton TT
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2067-75. PubMed ID: 12091398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced myopia associated with increased scleral creep in chick and tree shrew eyes.
    Phillips JR; Khalaj M; McBrien NA
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2028-34. PubMed ID: 10892839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced Scleral TIMP-2 Expression Is Associated With Myopia Development: TIMP-2 Supplementation Stabilizes Scleral Biomarkers of Myopia and Limits Myopia Development.
    Liu HH; Kenning MS; Jobling AI; McBrien NA; Gentle A
    Invest Ophthalmol Vis Sci; 2017 Apr; 58(4):1971-1981. PubMed ID: 28384717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scleral remodeling during the development of and recovery from axial myopia in the tree shrew.
    McBrien NA; Lawlor P; Gentle A
    Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3713-9. PubMed ID: 11053267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upregulation of regulator of G-protein signaling 2 in the sclera of a form deprivation myopic animal model.
    Zou L; Liu R; Zhang X; Chu R; Dai J; Zhou H; Liu H
    Mol Vis; 2014; 20():977-87. PubMed ID: 25018620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew.
    Guggenheim JA; McBrien NA
    Invest Ophthalmol Vis Sci; 1996 Jun; 37(7):1380-95. PubMed ID: 8641841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression signatures in tree shrew sclera during recovery from minus-lens wear and during plus-lens wear.
    Guo L; Frost MR; Siegwart JT; Norton TT
    Mol Vis; 2019; 25():311-328. PubMed ID: 31341380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady state mRNA levels in tree shrew sclera with form-deprivation myopia and during recovery.
    Siegwart JT; Norton TT
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1153-9. PubMed ID: 11328721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual deprivation upregulates extracellular matrix synthesis by chick scleral chondrocytes.
    Rada JA; Matthews AL
    Invest Ophthalmol Vis Sci; 1994 Apr; 35(5):2436-47. PubMed ID: 7512943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential protein expression in tree shrew sclera during development of lens-induced myopia and recovery.
    Frost MR; Norton TT
    Mol Vis; 2007 Sep; 13():1580-8. PubMed ID: 17893659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinoscleral control of scleral remodelling in refractive development: a role for endogenous FGF-2?
    Gentle A; McBrien NA
    Cytokine; 2002 Jun; 18(6):344-8. PubMed ID: 12160524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of scleral cell contraction by transforming growth factor-beta and stress: competing roles in myopic eye growth.
    Jobling AI; Gentle A; Metlapally R; McGowan BJ; McBrien NA
    J Biol Chem; 2009 Jan; 284(4):2072-9. PubMed ID: 19011237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression signatures in tree shrew sclera in response to three myopiagenic conditions.
    Guo L; Frost MR; He L; Siegwart JT; Norton TT
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6806-19. PubMed ID: 24045991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of mRNA and protein expression during minus-lens compensation and recovery in tree shrew sclera.
    Gao H; Frost MR; Siegwart JT; Norton TT
    Mol Vis; 2011 Apr; 17():903-19. PubMed ID: 21541268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteoglycan turnover in the sclera of normal and experimentally myopic chick eyes.
    Rada JA; Achen VR; Rada KG
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):1990-2002. PubMed ID: 9761277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Cyclic Adenosine Monophosphate in Myopic Scleral Remodeling in Guinea Pigs: A Microarray Analysis.
    Srinivasalu N; Lu C; Pan M; Reinach PS; Wen Y; Hu Y; Qu J; Zhou X
    Invest Ophthalmol Vis Sci; 2018 Aug; 59(10):4318-4325. PubMed ID: 30167661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression.
    Jobling AI; Nguyen M; Gentle A; McBrien NA
    J Biol Chem; 2004 Apr; 279(18):18121-6. PubMed ID: 14752095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.