These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 12607037)

  • 1. The antennal system and cockroach evasive behavior. I. Roles for visual and mechanosensory cues in the response.
    Ye S; Leung V; Khan A; Baba Y; Comer CM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):89-96. PubMed ID: 12607037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions.
    Comer CM; Parks L; Halvorsen MB; Breese-Terteling A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):97-103. PubMed ID: 12607038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular organization of an antennal mechanosensory pathway in the cockroach, Periplaneta americana.
    Burdohan JA; Comer CM
    J Neurosci; 1996 Sep; 16(18):5830-43. PubMed ID: 8795635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correspondence of escape-turning behavior with activity of descending mechanosensory interneurons in the cockroach, Periplaneta americana.
    Ye S; Comer CM
    J Neurosci; 1996 Sep; 16(18):5844-53. PubMed ID: 8795636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of antennal wall-following and escape in the cockroach.
    Chapman TP; Webb B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Sep; 192(9):949-69. PubMed ID: 16761132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of thoracic interneurons to tactile stimulation in cockroach, Periplaneta americana.
    Ritzmann RE; Pollack AJ
    J Neurobiol; 1994 Sep; 25(9):1113-28. PubMed ID: 7815067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana).
    Okada J; Toh Y
    J Comp Physiol A; 2000 Sep; 186(9):849-57. PubMed ID: 11085638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active touch in orthopteroid insects: behaviours, multisensory substrates and evolution.
    Comer C; Baba Y
    Philos Trans R Soc Lond B Biol Sci; 2011 Nov; 366(1581):3006-15. PubMed ID: 21969682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency steering maneuvers mediated by tactile cues: antennal wall-following in the cockroach.
    Camhi JM; Johnson EN
    J Exp Biol; 1999 Mar; 202(Pt 5):631-43. PubMed ID: 9929464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active tactile sensing for localization of objects by the cockroach antenna.
    Okada J; Toh Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jul; 192(7):715-26. PubMed ID: 16450116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An antennal-derived mechanosensory pathway in the cockroach: descending interneurons as a substrate for evasive behavior.
    Burdohan JA; Comer CM
    Brain Res; 1990 Dec; 535(2):347-52. PubMed ID: 2073615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collision avoidance by running insects: antennal guidance in cockroaches.
    Baba Y; Tsukada A; Comer CM
    J Exp Biol; 2010 Jul; 213(Pt 13):2294-302. PubMed ID: 20543128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual feedback influences antennal positioning in flying hawk moths.
    Krishnan A; Sane SP
    J Exp Biol; 2014 Mar; 217(Pt 6):908-17. PubMed ID: 24265427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotion- and mechanics-mediated tactile sensing: antenna reconfiguration simplifies control during high-speed navigation in cockroaches.
    Mongeau JM; Demir A; Lee J; Cowan NJ; Full RJ
    J Exp Biol; 2013 Dec; 216(Pt 24):4530-41. PubMed ID: 24307709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory processing within cockroach antenna enables rapid implementation of feedback control for high-speed running maneuvers.
    Mongeau JM; Sponberg SN; Miller JP; Full RJ
    J Exp Biol; 2015 Aug; 218(Pt 15):2344-54. PubMed ID: 26026042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanosensory control of antennal movement by the scapal hair plate in the American cockroach.
    Okada J; Kanamaru Y; Toh Y
    Zoolog Sci; 2002 Nov; 19(11):1201-10. PubMed ID: 12499662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One antenna, two antennae, big antennae, small: total antennae length, not bilateral symmetry, predicts odor-tracking performance in the American cockroach Periplaneta americana.
    Lockey JK; Willis MA
    J Exp Biol; 2015 Jul; 218(Pt 14):2156-65. PubMed ID: 25987729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing cockroach escape behavior with lesions of individual giant interneurons.
    Comer CM
    Brain Res; 1985 Jun; 335(2):342-6. PubMed ID: 4005563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The wind-elicited escape response of cockroaches (Periplaneta americana) is influenced by lesions rostral to the escape circuit.
    Keegan AP; Comer CM
    Brain Res; 1993 Aug; 620(2):310-6. PubMed ID: 8369964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wind spectra and the response of the cercal system in the cockroach.
    Rinberg D; Davidowitz H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):867-76. PubMed ID: 14566422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.