These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12607037)

  • 41. The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster.
    Budick SA; Reiser MB; Dickinson MH
    J Exp Biol; 2007 Dec; 210(Pt 23):4092-103. PubMed ID: 18025010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Motion analysis of escape movements evoked by tactile stimulation in the cockroach Periplaneta americana.
    Schaefer PL; Kondagunta GV; Ritzmann RE
    J Exp Biol; 1994 May; 190():287-94. PubMed ID: 7964395
    [No Abstract]   [Full Text] [Related]  

  • 43. Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis.
    Ritzmann RE; Ridgel AL; Pollack AJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Apr; 194(4):341-60. PubMed ID: 18180927
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual pathways for tactile sensory information to thoracic interneurons in the cockroach.
    Pollack AJ; Ritzmann RE; Watson JT
    J Neurobiol; 1995 Jan; 26(1):33-46. PubMed ID: 7714524
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparison of the escape behaviors of the cockroaches Blaberus craniifer and Periplaneta americana.
    Simpson BS; Ritzmann RE; Pollack AJ
    J Neurobiol; 1986 Sep; 17(5):405-19. PubMed ID: 3772361
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanical processing via passive dynamic properties of the cockroach antenna can facilitate control during rapid running.
    Mongeau JM; Demir A; Dallmann CJ; Jayaram K; Cowan NJ; Full RJ
    J Exp Biol; 2014 Sep; 217(Pt 18):3333-45. PubMed ID: 25013115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of tactile-sensitive interneurons in the abdominal ganglia of the cockroach, Periplaneta americana.
    Ritzmann RE; Pollack AJ
    J Neurobiol; 1998 Feb; 34(3):227-41. PubMed ID: 9485048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visual orientation and navigation in nocturnal arthropods.
    Warrant E; Dacke M
    Brain Behav Evol; 2010; 75(3):156-73. PubMed ID: 20733292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multisensory Control of Orientation in Tethered Flying Drosophila.
    Currier TA; Nagel KI
    Curr Biol; 2018 Nov; 28(22):3533-3546.e6. PubMed ID: 30393038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Somatosensory organization and behavior in naked mole-rats I: vibrissa-like body hairs comprise a sensory array that mediates orientation to tactile stimuli.
    Crish SD; Rice FL; Park TJ; Comer CM
    Brain Behav Evol; 2003; 62(3):141-51. PubMed ID: 12966188
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The roles of vision and antennal mechanoreception in hawkmoth flight control.
    Dahake A; Stöckl AL; Foster JJ; Sane SP; Kelber A
    Elife; 2018 Dec; 7():. PubMed ID: 30526849
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.).
    Willis MA; Avondet JL; Finnell AS
    J Exp Biol; 2008 Jul; 211(Pt 14):2317-26. PubMed ID: 18587126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial perception mediated by insect antennal mechanosensory system.
    Ifere NO; Shidara H; Sato N; Ogawa H
    J Exp Biol; 2022 Feb; 225(4):. PubMed ID: 35072207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of overtraining in the Morris water maze on allocentric and egocentric learning strategies in rats.
    Kealy J; Diviney M; Kehoe E; McGonagle V; O'Shea A; Harvey D; Commins S
    Behav Brain Res; 2008 Oct; 192(2):259-63. PubMed ID: 18514924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cockroaches keep predators guessing by using preferred escape trajectories.
    Domenici P; Booth D; Blagburn JM; Bacon JP
    Curr Biol; 2008 Nov; 18(22):1792-6. PubMed ID: 19013065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.
    Kanou M; Matsuyama A; Takuwa H
    Zoolog Sci; 2014 Sep; 31(9):559-64. PubMed ID: 25186926
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tactile efficiency of insect antennae with two hinge joints.
    Krause AF; Dürr V
    Biol Cybern; 2004 Sep; 91(3):168-81. PubMed ID: 15378371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visual stimuli induced by self-motion and object-motion modify odour-guided flight of male moths (Manduca sexta L.).
    Verspui R; Gray JR
    J Exp Biol; 2009 Oct; 212(Pt 20):3272-82. PubMed ID: 19801432
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antennal Responses to Hydrodynamic and Tactile Stimuli in the Spiny Lobster Panulirus argus.
    Wilkens LA; Schmitz B; Herrnkind WF
    Biol Bull; 1996 Oct; 191(2):187-198. PubMed ID: 29220239
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuronal organization of a fast-mediating cephalothoracic pathway for antennal-tactile information in the cricket (Gryllus bimaculatus DeGeer).
    Schöneich S; Schildberger K; Stevenson PA
    J Comp Neurol; 2011 Jun; 519(9):1677-90. PubMed ID: 21452239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.