These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 12609857)
1. Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study. Mombelli E; Morris R; Taylor W; Fraternali F Biophys J; 2003 Mar; 84(3):1507-17. PubMed ID: 12609857 [TBL] [Abstract][Full Text] [Related]
2. Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine. Niemelä P; Hyvönen MT; Vattulainen I Biophys J; 2004 Nov; 87(5):2976-89. PubMed ID: 15315947 [TBL] [Abstract][Full Text] [Related]
3. Molecular Dynamics Investigation of the Ternary Bilayer Formed by Saturated Phosphotidylcholine, Sphingomyelin, and Cholesterol. Smith AK; Klimov DK J Phys Chem B; 2018 Dec; 122(49):11311-11325. PubMed ID: 30156415 [TBL] [Abstract][Full Text] [Related]
4. Structure of sphingomyelin bilayers: a simulation study. Chiu SW; Vasudevan S; Jakobsson E; Mashl RJ; Scott HL Biophys J; 2003 Dec; 85(6):3624-35. PubMed ID: 14645055 [TBL] [Abstract][Full Text] [Related]
5. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts. Quinn PJ Langmuir; 2013 Jul; 29(30):9447-56. PubMed ID: 23863113 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations of phospholipid bilayers with cholesterol. Hofsäss C; Lindahl E; Edholm O Biophys J; 2003 Apr; 84(4):2192-206. PubMed ID: 12668428 [TBL] [Abstract][Full Text] [Related]
7. Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine. Aittoniemi J; Niemelä PS; Hyvönen MT; Karttunen M; Vattulainen I Biophys J; 2007 Feb; 92(4):1125-37. PubMed ID: 17114220 [TBL] [Abstract][Full Text] [Related]
8. Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations. Kumari P; Kaur S; Sharma S; Kashyap HK J Chem Phys; 2018 Apr; 148(16):165102. PubMed ID: 29716234 [TBL] [Abstract][Full Text] [Related]
9. Combined Monte Carlo and molecular dynamics simulation of hydrated 18:0 sphingomyelin-cholesterol lipid bilayers. Khelashvili GA; Scott HL J Chem Phys; 2004 May; 120(20):9841-7. PubMed ID: 15268001 [TBL] [Abstract][Full Text] [Related]
10. N- and O-methylation of sphingomyelin markedly affects its membrane properties and interactions with cholesterol. Björkbom A; Róg T; Kankaanpää P; Lindroos D; Kaszuba K; Kurita M; Yamaguchi S; Yamamoto T; Jaikishan S; Paavolainen L; Päivärinne J; Nyholm TK; Katsumura S; Vattulainen I; Slotte JP Biochim Biophys Acta; 2011 Apr; 1808(4):1179-86. PubMed ID: 21262197 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Mukhopadhyay P; Monticelli L; Tieleman DP Biophys J; 2004 Mar; 86(3):1601-9. PubMed ID: 14990486 [TBL] [Abstract][Full Text] [Related]
12. Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide. Hall A; Róg T; Karttunen M; Vattulainen I J Phys Chem B; 2010 Jun; 114(23):7797-807. PubMed ID: 20496924 [TBL] [Abstract][Full Text] [Related]
13. Assessing the nature of lipid raft membranes. Niemelä PS; Ollila S; Hyvönen MT; Karttunen M; Vattulainen I PLoS Comput Biol; 2007 Feb; 3(2):e34. PubMed ID: 17319738 [TBL] [Abstract][Full Text] [Related]