These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12609868)

  • 41. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli.
    Frillingos S; Sun J; Gonzalez A; Kaback HR
    Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluorescent labeling of the leukocyte NADPH oxidase subunit p47(phox): evidence for amphiphile-induced conformational changes.
    Park HS; Park JW
    Arch Biochem Biophys; 1998 Dec; 360(2):165-72. PubMed ID: 9851827
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermodynamic effects of proline introduction on protein stability.
    Prajapati RS; Das M; Sreeramulu S; Sirajuddin M; Srinivasan S; Krishnamurthy V; Ranjani R; Ramakrishnan C; Varadarajan R
    Proteins; 2007 Feb; 66(2):480-91. PubMed ID: 17034035
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for two conformational states of thioredoxin reductase from Escherichia coli: use of intrinsic and extrinsic quenchers of flavin fluorescence as probes to observe domain rotation.
    Mulrooney SB; Williams CH
    Protein Sci; 1997 Oct; 6(10):2188-95. PubMed ID: 9336841
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fluorescence resonance energy transfer sensor for the beta-domain of metallothionein.
    Hong SH; Maret W
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2255-60. PubMed ID: 12618543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ca2+-dependent conformational changes in the neuronal Ca2+-sensor recoverin probed by the fluorescent dye Alexa647.
    Gensch T; Komolov KE; Senin II; Philippov PP; Koch KW
    Proteins; 2007 Feb; 66(2):492-9. PubMed ID: 17078090
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An induced folding process characterizes the partial-loss of function mutant LptAI36D in its interactions with ligands.
    Santambrogio C; Sperandeo P; Barbieri F; Martorana AM; Polissi A; Grandori R
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1451-7. PubMed ID: 26123264
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations.
    Ewald JC; Reich S; Baumann S; Frommer WB; Zamboni N
    PLoS One; 2011; 6(12):e28245. PubMed ID: 22164251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS.
    Maity S; Trinco G; Buzón P; Anshari ZR; Kodera N; Ngo KX; Ando T; Slotboom DJ; Roos WH
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35101979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A fluorescence-based sensing system for the environmental monitoring of nickel using the nickel binding protein from Escherichia coli.
    Salins LL; Goldsmith ES; Ensor CM; Daunert S
    Anal Bioanal Chem; 2002 Jan; 372(1):174-80. PubMed ID: 11939190
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A combination of mutational and computational scanning guides the design of an artificial ligand-binding controlled lipase.
    Kaschner M; Schillinger O; Fettweiss T; Nutschel C; Krause F; Fulton A; Strodel B; Stadler A; Jaeger KE; Krauss U
    Sci Rep; 2017 Feb; 7():42592. PubMed ID: 28218303
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generation of circularly permuted fluorescent-protein-based indicators for in vitro and in vivo detection of citrate.
    Honda Y; Kirimura K
    PLoS One; 2013; 8(5):e64597. PubMed ID: 23717638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibitors of the mitochondrial citrate transport protein: validation of the role of substrate binding residues and discovery of the first purely competitive inhibitor.
    Aluvila S; Sun J; Harrison DH; Walters DE; Kaplan RS
    Mol Pharmacol; 2010 Jan; 77(1):26-34. PubMed ID: 19843634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PMR studies of the substrate induced conformational change of glutamine binding protein from E. coli.
    Kreishman GP; Robertson DE; Ho C
    Biochem Biophys Res Commun; 1973 Jul; 53(1):18-23. PubMed ID: 4582370
    [No Abstract]   [Full Text] [Related]  

  • 55. Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS.
    Kim JW; Kim S; Kim S; Lee H; Lee JO; Jin MS
    Sci Rep; 2017 May; 7(1):2548. PubMed ID: 28566738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-molecule fluorescence studies of protein folding and conformational dynamics.
    Michalet X; Weiss S; Jäger M
    Chem Rev; 2006 May; 106(5):1785-813. PubMed ID: 16683755
    [No Abstract]   [Full Text] [Related]  

  • 57. The 2-hydroxycarboxylate transporter family: physiology, structure, and mechanism.
    Sobczak I; Lolkema JS
    Microbiol Mol Biol Rev; 2005 Dec; 69(4):665-95. PubMed ID: 16339740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The citrate carrier CitS probed by single-molecule fluorescence spectroscopy.
    Kästner CN; Prummer M; Sick B; Renn A; Wild UP; Dimroth P
    Biophys J; 2003 Mar; 84(3):1651-9. PubMed ID: 12609868
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transmembrane segment (TMS) VIII of the Na(+)/Citrate transporter CitS requires downstream TMS IX for insertion in the Escherichia coli membrane.
    van Geest M; Lolkema JS
    J Biol Chem; 1999 Oct; 274(42):29705-11. PubMed ID: 10514443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Na+-dependent citrate carrier of Klebsiella pneumoniae: high-level expression and site-directed mutagenesis of asparagine-185 and glutamate-194.
    Kästner CN; Dimroth P; Pos KM
    Arch Microbiol; 2000; 174(1-2):67-73. PubMed ID: 10985744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.