BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 12609884)

  • 1. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.
    Lawrence JC; Saslowsky DE; Edwardson JM; Henderson RM
    Biophys J; 2003 Mar; 84(3):1827-32. PubMed ID: 12609884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of cyclodextrin for AFM monitoring of model raft formation.
    Giocondi MC; Milhiet PE; Dosset P; Le Grimellec C
    Biophys J; 2004 Feb; 86(2):861-9. PubMed ID: 14747321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes.
    Yuan C; Furlong J; Burgos P; Johnston LJ
    Biophys J; 2002 May; 82(5):2526-35. PubMed ID: 11964241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A closer look at the canonical 'Raft Mixture' in model membrane studies.
    Veatch SL; Keller SL
    Biophys J; 2003 Jan; 84(1):725-6. PubMed ID: 12524324
    [No Abstract]   [Full Text] [Related]  

  • 7. Syntaxin is efficiently excluded from sphingomyelin-enriched domains in supported lipid bilayers containing cholesterol.
    Saslowsky DE; Lawrence JC; Henderson RM; Edwardson JM
    J Membr Biol; 2003 Aug; 194(3):153-64. PubMed ID: 14502428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts.
    de Almeida RF; Fedorov A; Prieto M
    Biophys J; 2003 Oct; 85(4):2406-16. PubMed ID: 14507704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceramide promotes restructuring of model raft membranes.
    Johnston I; Johnston LJ
    Langmuir; 2006 Dec; 22(26):11284-9. PubMed ID: 17154617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-raft forming sphingomyelin-cholesterol mixtures.
    Epand RM; Epand RF
    Chem Phys Lipids; 2004 Nov; 132(1):37-46. PubMed ID: 15530446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane.
    Murthy AV; Guyomarc'h F; Lopez C
    Langmuir; 2016 Jul; 32(26):6757-65. PubMed ID: 27300157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoylphosphatidylcholine/cholesterol bilayers.
    Bao R; Li L; Qiu F; Yang Y
    J Phys Chem B; 2011 May; 115(19):5923-9. PubMed ID: 21526782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a 2-hydroxylated fatty acid on cholesterol-rich membrane domains.
    Prades J; Funari SS; Gomez-Florit M; Vögler O; Barceló F
    Mol Membr Biol; 2012 Dec; 29(8):333-43. PubMed ID: 22830943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine.
    Pandit SA; Jakobsson E; Scott HL
    Biophys J; 2004 Nov; 87(5):3312-22. PubMed ID: 15339797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS.
    Chiantia S; Kahya N; Ries J; Schwille P
    Biophys J; 2006 Jun; 90(12):4500-8. PubMed ID: 16565041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization.
    Shaw JE; Epand RF; Epand RM; Li Z; Bittman R; Yip CM
    Biophys J; 2006 Mar; 90(6):2170-8. PubMed ID: 16361347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy.
    Khadka NK; Ho CS; Pan J
    Langmuir; 2015 Nov; 31(45):12417-25. PubMed ID: 26506226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation.
    Pandit SA; Vasudevan S; Chiu SW; Mashl RJ; Jakobsson E; Scott HL
    Biophys J; 2004 Aug; 87(2):1092-100. PubMed ID: 15298913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.