BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 12609901)

  • 1. Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases.
    Cereghetti GM; Schweiger A; Glockshuber R; Van Doorslaer S
    Biophys J; 2003 Mar; 84(3):1985-97. PubMed ID: 12609901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein.
    Cereghetti GM; Schweiger A; Glockshuber R; Van Doorslaer S
    Biophys J; 2001 Jul; 81(1):516-25. PubMed ID: 11423433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Familial mutations and the thermodynamic stability of the recombinant human prion protein.
    Swietnicki W; Petersen RB; Gambetti P; Surewicz WK
    J Biol Chem; 1998 Nov; 273(47):31048-52. PubMed ID: 9813003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein.
    Liemann S; Glockshuber R
    Biochemistry; 1999 Mar; 38(11):3258-67. PubMed ID: 10079068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disease-associated F198S mutation increases the propensity of the recombinant prion protein for conformational conversion to scrapie-like form.
    Vanik DL; Surewicz WK
    J Biol Chem; 2002 Dec; 277(50):49065-70. PubMed ID: 12372829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-cleavage of the human prion protein impacts Cu(II) coordination at its non-octarepeat region.
    Sánchez-López C; Quintanar L
    J Inorg Biochem; 2022 Mar; 228():111686. PubMed ID: 34929540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphism at residue 129 modulates the conformational conversion of the D178N variant of human prion protein 90-231.
    Apetri AC; Vanik DL; Surewicz WK
    Biochemistry; 2005 Dec; 44(48):15880-8. PubMed ID: 16313190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils.
    Bocharova OV; Breydo L; Salnikov VV; Baskakov IV
    Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosensing of lipid-prion interactions: insights on charge effect, Cu(II)-ions binding and prion oligomerization.
    Steunou S; Chich JF; Rezaei H; Vidic J
    Biosens Bioelectron; 2010 Dec; 26(4):1399-406. PubMed ID: 20692152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site.
    D'Angelo P; Della Longa S; Arcovito A; Mancini G; Zitolo A; Chillemi G; Giachin G; Legname G; Benetti F
    Biochemistry; 2012 Aug; 51(31):6068-79. PubMed ID: 22788868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein.
    Jones CE; Abdelraheim SR; Brown DR; Viles JH
    J Biol Chem; 2004 Jul; 279(31):32018-27. PubMed ID: 15145944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper alters aggregation behavior of prion protein and induces novel interactions between its N- and C-terminal regions.
    Thakur AK; Srivastava AK; Srinivas V; Chary KVR; Rao CM
    J Biol Chem; 2011 Nov; 286(44):38533-38545. PubMed ID: 21900252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Sträussler-Scheinker disease peptides in the presence of metal ions.
    Ricchelli F; Buggio R; Drago D; Salmona M; Forloni G; Negro A; Tognon G; Zatta P
    Biochemistry; 2006 May; 45(21):6724-32. PubMed ID: 16716083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A doppel alpha-helix peptide fragment mimics the copper(II) interactions with the whole protein.
    La Mendola D; Magrì A; Campagna T; Campitiello MA; Raiola L; Isernia C; Hansson O; Bonomo RP; Rizzarelli E
    Chemistry; 2010 Jun; 16(21):6212-23. PubMed ID: 20411530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper(II) binding to the human Doppel protein may mark its functional diversity from the prion protein.
    Cereghetti GM; Negro A; Vinck E; Massimino ML; Sorgato MC; Van Doorslaer S
    J Biol Chem; 2004 Aug; 279(35):36497-503. PubMed ID: 15218028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural facets of disease-linked human prion protein mutants: a molecular dynamic study.
    Rossetti G; Giachin G; Legname G; Carloni P
    Proteins; 2010 Dec; 78(16):3270-80. PubMed ID: 20806222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insertion of beta-alanine in model peptides for copper binding to His96 and His111 of the human prion protein.
    Rivillas-Acevedo L; Maciel-Barón L; García JE; Juaristi E; Quintanar L
    J Inorg Biochem; 2013 Sep; 126():104-10. PubMed ID: 23796442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Familial prion disease mutation alters the secondary structure of recombinant mouse prion protein: implications for the mechanism of prion formation.
    Cappai R; Stewart L; Jobling MF; Thyer JM; White AR; Beyreuther K; Collins SJ; Masters CL; Barrow CJ
    Biochemistry; 1999 Mar; 38(11):3280-4. PubMed ID: 10079070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the human and chicken prion protein copper binding regions at pH 6.5.
    Redecke L; Meyer-Klaucke W; Koker M; Clos J; Georgieva D; Genov N; Echner H; Kalbacher H; Perbandt M; Bredehorst R; Voelter W; Betzel C
    J Biol Chem; 2005 Apr; 280(14):13987-92. PubMed ID: 15684434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence.
    Miura T; Hori-i A; Mototani H; Takeuchi H
    Biochemistry; 1999 Aug; 38(35):11560-9. PubMed ID: 10471308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.