These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 12610695)

  • 1. Modulation of cutaneous reflexes in arm muscles during walking: further evidence of similar control mechanisms for rhythmic human arm and leg movements.
    Zehr EP; Haridas C
    Exp Brain Res; 2003 Mar; 149(2):260-6. PubMed ID: 12610695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes.
    Zehr EP; Kido A
    J Physiol; 2001 Dec; 537(Pt 3):1033-45. PubMed ID: 11744775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulations of interlimb and intralimb cutaneous reflexes during simultaneous arm and leg cycling in humans.
    Sakamoto M; Endoh T; Nakajima T; Tazoe T; Shiozawa S; Komiyama T
    Clin Neurophysiol; 2006 Jun; 117(6):1301-11. PubMed ID: 16651023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of human cutaneous reflexes during rhythmic cyclical arm movement.
    Zehr EP; Chua R
    Exp Brain Res; 2000 Nov; 135(2):241-50. PubMed ID: 11131509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks.
    Zehr EP; Balter JE; Ferris DP; Hundza SR; Loadman PM; Stoloff RH
    J Physiol; 2007 Jul; 582(Pt 1):209-27. PubMed ID: 17463036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forward and backward arm cycling are regulated by equivalent neural mechanisms.
    Zehr EP; Hundza SR
    J Neurophysiol; 2005 Jan; 93(1):633-40. PubMed ID: 15317838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitation of soleus H-reflex amplitude evoked by cutaneous nerve stimulation at the wrist is not suppressed by rhythmic arm movement.
    Zehr EP; Frigon A; Hoogenboom N; Collins DF
    Exp Brain Res; 2004 Dec; 159(3):382-8. PubMed ID: 15480593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning.
    Frigon A; Collins DF; Zehr EP
    J Neurophysiol; 2004 Apr; 91(4):1516-23. PubMed ID: 14657191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of cutaneous reflexes in human upper limb muscles during arm cycling is independent of activity in the contralateral arm.
    Carroll TJ; Zehr EP; Collins DF
    Exp Brain Res; 2005 Feb; 161(2):133-44. PubMed ID: 15517223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking.
    Haridas C; Zehr EP
    J Neurophysiol; 2003 Nov; 90(5):2850-61. PubMed ID: 12853441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutaneous reflexes during rhythmic arm cycling are insensitive to asymmetrical changes in crank length.
    Hundza SR; Zehr EP
    Exp Brain Res; 2006 Jan; 168(1-2):165-77. PubMed ID: 16041498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical outcomes and neural correlates of cutaneous reflexes evoked during rhythmic arm cycling.
    Klimstra MD; Thomas E; Zehr EP
    J Biomech; 2011 Mar; 44(5):802-9. PubMed ID: 21288521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Context-dependent modulation of interlimb cutaneous reflexes in arm muscles as a function of stability threat during walking.
    Haridas C; Zehr EP; Misiaszek JE
    J Neurophysiol; 2006 Dec; 96(6):3096-103. PubMed ID: 17005610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible contributions of CPG activity to the control of rhythmic human arm movement.
    Zehr EP; Carroll TJ; Chua R; Collins DF; Frigon A; Haridas C; Hundza SR; Thompson AK
    Can J Physiol Pharmacol; 2004; 82(8-9):556-68. PubMed ID: 15523513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prior experience does not alter modulation of cutaneous reflexes during manual wheeling and symmetrical arm cycling.
    MacGillivray MK; Klimstra M; Sawatzky B; Zehr EP; Lam T
    J Neurophysiol; 2013 May; 109(9):2345-53. PubMed ID: 23427304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence of locomotor-related interlimb reflex networks during walking after stroke.
    Zehr EP; Loadman PM
    Clin Neurophysiol; 2012 Apr; 123(4):796-807. PubMed ID: 21945456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural control of rhythmic arm cycling after stroke.
    Zehr EP; Loadman PM; Hundza SR
    J Neurophysiol; 2012 Aug; 108(3):891-905. PubMed ID: 22572949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation.
    Massaad F; Levin O; Meyns P; Drijkoningen D; Swinnen SP; Duysens J
    Neuroscience; 2014 Jan; 258():34-46. PubMed ID: 24144625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.