These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 12612671)

  • 1. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods.
    Kan S; Mokari T; Rothenberg E; Banin U
    Nat Mater; 2003 Mar; 2(3):155-8. PubMed ID: 12612671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum mazes: luminescent labyrinthine semiconductor nanocrystals having a narrow emission spectrum.
    De Paoli Lacerda SH; Douglas JF; Hudson SD; Roy M; Johnson JM; Becker ML; Karim A
    ACS Nano; 2007 Nov; 1(4):337-47. PubMed ID: 19206685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals.
    Mahler B; Lequeux N; Dubertret B
    J Am Chem Soc; 2010 Jan; 132(3):953-9. PubMed ID: 20043669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape control of CdSe nanocrystals with zinc blende structure.
    Liu L; Zhuang Z; Xie T; Wang YG; Li J; Peng Q; Li Y
    J Am Chem Soc; 2009 Nov; 131(45):16423-9. PubMed ID: 19902978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-functionalization-dependent optical properties of II-VI semiconductor nanocrystals.
    Chen O; Yang Y; Wang T; Wu H; Niu C; Yang J; Cao YC
    J Am Chem Soc; 2011 Nov; 133(43):17504-12. PubMed ID: 21954890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes.
    Jun YW; Choi JS; Cheon J
    Angew Chem Int Ed Engl; 2006 May; 45(21):3414-39. PubMed ID: 16642516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-dependent blinking of zinc-blende CdSe/ZnS core/shell nanocrystals.
    Kim Y; Song NW; Yu H; Moon DW; Lim SJ; Kim W; Yoon HJ; Koo Shin S
    Phys Chem Chem Phys; 2009 May; 11(18):3497-502. PubMed ID: 19421553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis.
    Deng Z; Cao L; Tang F; Zou B
    J Phys Chem B; 2005 Sep; 109(35):16671-5. PubMed ID: 16853121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of reaction temperatures and media on crystal structure of colloidal nanocrystals synthesized from an aerosol flow system.
    Kim DJ; Jang HD; Kim EJ; Koo KK
    Ultramicroscopy; 2008 Sep; 108(10):1278-82. PubMed ID: 18554800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape control of CdSe nanocrystals.
    Peng X; Manna L; Yang W; Wickham J; Scher E; Kadavanich A; Alivisatos AP
    Nature; 2000 Mar; 404(6773):59-61. PubMed ID: 10716439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology-tuned wurtzite-type ZnS nanobelts.
    Wang Z; Daemen LL; Zhao Y; Zha CS; Downs RT; Wang X; Wang ZL; Hemley RJ
    Nat Mater; 2005 Dec; 4(12):922-7. PubMed ID: 16284620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core/Shell semiconductor nanocrystals.
    Reiss P; Protière M; Li L
    Small; 2009 Feb; 5(2):154-68. PubMed ID: 19153991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape control of III-V semiconductor nanocrystals: synthesis and properties of InAs quantum rods.
    Kan S; Aharoni A; Mokari T; Banin U
    Faraday Discuss; 2004; 125():23-38; discussion 99-116. PubMed ID: 14750662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge separation in heterostructures of InP nanocrystals with metal particles.
    Dimitrijević NM; Rajh T; Ahrenkiel SP; Nedeljković JM; Mićić OI; Nozik AJ
    J Phys Chem B; 2005 Oct; 109(39):18243-9. PubMed ID: 16853347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled synthesis and luminescence of semiconductor nanorods.
    Li P; Wang L; Wang L; Li Y
    Chemistry; 2008; 14(19):5951-6. PubMed ID: 18491306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications.
    Rogach AL; Eychmüller A; Hickey SG; Kershaw SV
    Small; 2007 Apr; 3(4):536-57. PubMed ID: 17340666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twinning superlattices in indium phosphide nanowires.
    Algra RE; Verheijen MA; Borgström MT; Feiner LF; Immink G; van Enckevort WJ; Vlieg E; Bakkers EP
    Nature; 2008 Nov; 456(7220):369-72. PubMed ID: 19020617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general strategy for synthesizing colloidal semiconductor zinc chalcogenide quantum rods.
    Jia G; Banin U
    J Am Chem Soc; 2014 Aug; 136(31):11121-7. PubMed ID: 25032504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.