BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12612788)

  • 1. Significance of the non-oxidative route of the pentose phosphate pathway for supplying carbon to the purine-nucleotide pathway in Corynebacterium ammoniagenes.
    Kamada N; Yasuhara A; Ikeda M
    J Ind Microbiol Biotechnol; 2003 Feb; 30(2):129-32. PubMed ID: 12612788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes.
    Kamada N; Yasuhara A; Takano Y; Nakano T; Ikeda M
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):710-7. PubMed ID: 11601619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the oxidative pentose phosphate pathway in thiamine biosynthesis in Salmonella typhimurium.
    Enos-Berlage JL; Downs DM
    J Bacteriol; 1996 Mar; 178(5):1476-9. PubMed ID: 8631729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133.
    Summers ML; Wallis JG; Campbell EL; Meeks JC
    J Bacteriol; 1995 Nov; 177(21):6184-94. PubMed ID: 7592384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.
    Hibbs JB; Vavrin Z; Cox JE
    Redox Biol; 2016 Aug; 8():271-84. PubMed ID: 26895212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway.
    Follstad BD; Stephanopoulos G
    Eur J Biochem; 1998 Mar; 252(3):360-71. PubMed ID: 9546650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase.
    Becker J; Klopprogge C; Herold A; Zelder O; Bolten CJ; Wittmann C
    J Biotechnol; 2007 Oct; 132(2):99-109. PubMed ID: 17624457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation.
    Boros LG; Puigjaner J; Cascante M; Lee WN; Brandes JL; Bassilian S; Yusuf FI; Williams RD; Muscarella P; Melvin WS; Schirmer WJ
    Cancer Res; 1997 Oct; 57(19):4242-8. PubMed ID: 9331084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum.
    Ikeda M; Okamoto K; Katsumata R
    Appl Microbiol Biotechnol; 1999 Feb; 51(2):201-6. PubMed ID: 10091326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pentose phosphates in nucleoside interconversion and catabolism.
    Tozzi MG; Camici M; Mascia L; Sgarrella F; Ipata PL
    FEBS J; 2006 Mar; 273(6):1089-101. PubMed ID: 16519676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High control coefficient of transketolase in the nonoxidative pentose phosphate pathway of human erythrocytes: NMR, antibody, and computer simulation studies.
    Berthon HA; Kuchel PW; Nixon PF
    Biochemistry; 1992 Dec; 31(51):12792-8. PubMed ID: 1463749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.).
    Hutchings D; Rawsthorne S; Emes MJ
    J Exp Bot; 2005 Feb; 56(412):577-85. PubMed ID: 15611146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pentose-phosphate pathway in Saccharomyces cerevisiae: analysis of deletion mutants for transketolase, transaldolase, and glucose 6-phosphate dehydrogenase.
    Schaaff-Gerstenschläger I; Zimmermann FK
    Curr Genet; 1993 Nov; 24(5):373-6. PubMed ID: 8299150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway.
    Flores S; de Anda-Herrera R; Gosset G; Bolívar FG
    Biotechnol Bioeng; 2004 Aug; 87(4):485-94. PubMed ID: 15286986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart.
    Zimmer HG
    Mol Cell Biochem; 1996; 160-161():101-9. PubMed ID: 8901462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose.
    Lee WN; Boros LG; Puigjaner J; Bassilian S; Lim S; Cascante M
    Am J Physiol; 1998 May; 274(5):E843-51. PubMed ID: 9612242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phosphogluconate pathway and synthesis of 5-phosphoribosyl-1-pyrophosphate in human fibroblasts.
    Raivio KO; Lazar CS; Krumholz HR; Becker MA
    Biochim Biophys Acta; 1981 Nov; 678(1):51-7. PubMed ID: 6171305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the oxidative and nonoxidative pentose phosphate pathways by somatostatin: a possible mechanism of antitumor action.
    Boros LG; Brandes JL; Yusuf FI; Cascante M; Williams RD; Schirmer WJ
    Med Hypotheses; 1998 Jun; 50(6):501-6. PubMed ID: 9710324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.