These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12613293)

  • 1. Blood flow measurement from plethysmographic pulse waves without venous occlusion.
    Woolfson PI; Pullan BR; Lewis PS
    Biomed Instrum Technol; 2003; 37(1):41-6. PubMed ID: 12613293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plethysmography without venous occlusion for measuring forearm blood flow: comparison with venous occlusive method.
    Chuah SS; Woolfson PI; Pullan BR; Lewis PS
    Clin Physiol Funct Imaging; 2004 Sep; 24(5):296-303. PubMed ID: 15383087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can venous occlusion plethysmography be used to measure high rates of arterial inflow?
    Wood RE; Stewart IB
    Eur J Appl Physiol; 2010 Jan; 108(2):239-45. PubMed ID: 19774391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in forearm position and environmental temperature influences the segmental volume expansion during venous occlusion plethysmography--special attention on hand circulation.
    Vedung T; Jorfeldt L; Henriksson J
    Clin Physiol Funct Imaging; 2009 Sep; 29(5):376-81. PubMed ID: 19522855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cuff inflation time significantly affects blood flow recorded with venous occlusion plethysmography.
    Junejo RT; Ray CJ; Marshall JM
    Eur J Appl Physiol; 2019 Mar; 119(3):665-674. PubMed ID: 30617468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability and reproducibility of arterial and venous circulation parameters in the forearm and calf measured at one-week intervals.
    Altenkirch HU; Koch G; Koralewski HE
    Vasa; 1990; 19(1):21-5. PubMed ID: 2343652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forearm arterial compliance: the validation of a plethysmographic technique for the measurement of arterial compliance.
    Fitchett D; Bouthier JD; Simon AC; Levenson JA; Safar ME
    Clin Sci (Lond); 1984 Jul; 67(1):69-72. PubMed ID: 6734079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computerized evaluation of the peripheral blood flow during maximal vasodilatation in humans using venous occlusion plethysmography.
    Gretzer I; Inacio J; Olsson A
    Clin Physiol; 1995 Mar; 15(2):131-41. PubMed ID: 7600733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How reproducible is bilateral forearm plethysmography?
    Petrie JR; Ueda S; Morris AD; Murray LS; Elliott HL; Connell JM
    Br J Clin Pharmacol; 1998 Feb; 45(2):131-9. PubMed ID: 9491825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple water-filled plethysmograph for measurement of limb blood flow in humans.
    Raine NM; Sneddon JC
    Adv Physiol Educ; 2002 Dec; 26(1-4):120-8. PubMed ID: 12031944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of forearm blood flow by venous occlusion plethysmography: influence of hand blood flow during sustained and intermittent isometric exercise.
    Williams CA; Lind AR
    Eur J Appl Physiol Occup Physiol; 1979 Nov; 42(3):141-9. PubMed ID: 527576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of venous occlusion per se on forearm muscle blood flow: implications for the near-infrared spectroscopy venous occlusion technique.
    Cross TJ; Sabapathy S
    Clin Physiol Funct Imaging; 2017 May; 37(3):293-298. PubMed ID: 26427913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of arterial and venous circulation in upper and lower extremities by venous occlusion strain gauge plethysmography. Normal values and reproducibility.
    Altenkirch HU; Fransson L; Koch G
    Vasa; 1989; 18(2):140-5. PubMed ID: 2741535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. External compression increases forearm perfusion.
    Bochmann RP; Seibel W; Haase E; Hietschold V; Rödel H; Deussen A
    J Appl Physiol (1985); 2005 Dec; 99(6):2337-44. PubMed ID: 16081618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radionuclide plethysmography for noninvasive evaluation of peripheral arterial blood flow.
    Harel F; Dupuis J; Benelfassi A; Ruel N; Grégoire J
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H258-62. PubMed ID: 15734880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A volume-displacement plethysmograph to measure limb blood flow in the newborn infant.
    Kleinberg F; Newmann LL; Dong L; Phibbs RH
    Mayo Clin Proc; 1976 Jul; 51(7):430-2. PubMed ID: 933558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plethysmographic arterial waveform strain discrimination by Fisher's method.
    Kucewicz JC; Huang L; Beach KW
    Ultrasound Med Biol; 2004 Jun; 30(6):773-82. PubMed ID: 15219957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beat-by-beat forearm blood flow with Doppler ultrasound and strain-gauge plethysmography.
    Tschakovsky ME; Shoemaker JK; Hughson RL
    J Appl Physiol (1985); 1995 Sep; 79(3):713-9. PubMed ID: 8567508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm.
    Vo TV; Hammer PE; Hoimes ML; Nadgir S; Fantini S
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):573-84. PubMed ID: 17405365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of plethysmographic methods with pulsed Döppler blood flowmetry.
    Levy BI; Valladares WR; Ghaem A; Martineaud JP
    Am J Physiol; 1979 Jun; 236(6):H899-903. PubMed ID: 443456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.