BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12613668)

  • 1. Regulation of caldesmon activity by Cdc2 kinase plays an important role in maintaining membrane cortex integrity during cell division.
    Li Y; Wessels D; Wang T; Lin JL; Soll DR; Lin JJ
    Cell Mol Life Sci; 2003 Jan; 60(1):198-211. PubMed ID: 12613668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caldesmon mutant defective in Ca(2+)-calmodulin binding interferes with assembly of stress fibers and affects cell morphology, growth and motility.
    Li Y; Lin JL; Reiter RS; Daniels K; Soll DR; Lin JJ
    J Cell Sci; 2004 Jul; 117(Pt 16):3593-604. PubMed ID: 15226374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tropomyosin and caldesmon regulate cytokinesis speed and membrane stability during cell division.
    Eppinga RD; Li Y; Lin JL; Lin JJ
    Arch Biochem Biophys; 2006 Dec; 456(2):161-74. PubMed ID: 16854366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of human fibroblast caldesmon fragment containing actin-, Ca++/calmodulin-, and tropomyosin-binding domains stabilizes endogenous tropomyosin and microfilaments.
    Warren KS; Lin JL; Wamboldt DD; Lin JJ
    J Cell Biol; 1994 Apr; 125(2):359-68. PubMed ID: 8163552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant Caldesmon lacking cdc2 phosphorylation sites delays M-phase entry and inhibits cytokinesis.
    Yamashiro S; Chern H; Yamakita Y; Matsumura F
    Mol Biol Cell; 2001 Jan; 12(1):239-50. PubMed ID: 11160835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of microfilament-stabilizing human caldesmon fragment, CaD39, affects cell attachment, spreading, and cytokinesis.
    Warren KS; Shutt DC; McDermott JP; Lin JL; Soll DR; Lin JJ
    Cell Motil Cytoskeleton; 1996; 34(3):215-29. PubMed ID: 8816288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement of reversible caldesmon phosphorylation at P21-activated kinase-responsive sites for lamellipodia extensions during cell migration.
    Eppinga RD; Li Y; Lin JL; Mak AS; Lin JJ
    Cell Motil Cytoskeleton; 2006 Sep; 63(9):543-62. PubMed ID: 16800003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional effects of mutations Thr673-->Asp and Ser702-->Asp at the Pro-directed kinase phosphorylation sites in the C-terminus of chicken gizzard caldesmon.
    Redwood CS; Marston SB; Gusev NB
    FEBS Lett; 1993 Jul; 327(1):85-9. PubMed ID: 8392947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of caldesmon and its dephosphorylation during cell division.
    Hosoya N; Hosoya H; Yamashiro S; Mohri H; Matsumura F
    J Cell Biol; 1993 Jun; 121(5):1075-82. PubMed ID: 8388877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of caldesmon by cdc2 kinase.
    Mak AS; Watson MH; Litwin CM; Wang JH
    J Biol Chem; 1991 Apr; 266(11):6678-81. PubMed ID: 2016282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylated l-caldesmon is involved in disassembly of actin stress fibers and postmitotic spreading.
    Kordowska J; Hetrick T; Adam LP; Wang CL
    Exp Cell Res; 2006 Jan; 312(2):95-110. PubMed ID: 16289153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment of caldesmon on the actin-tropomyosin filaments.
    Tsuruda TS; Watson MH; Foster DB; Lin JJ; Mak AS
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):951-7. PubMed ID: 7639715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the COOH terminus of non-muscle caldesmon mutants lacking mitosis-specific phosphorylation sites.
    Yamashiro S; Yamakita Y; Yoshida K; Takiguchi K; Matsumura F
    J Biol Chem; 1995 Feb; 270(8):4023-30. PubMed ID: 7876150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan residues in caldesmon are major determinants for calmodulin binding.
    Graether SP; Heinonen TY; Raharjo WH; Jin JP; Mak AS
    Biochemistry; 1997 Jan; 36(2):364-9. PubMed ID: 9003189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis.
    Yamashiro S; Yamakita Y; Hosoya H; Matsumura F
    Nature; 1991 Jan; 349(6305):169-72. PubMed ID: 1986309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced expression of a dominant-negative chimeric tropomyosin causes abnormal motile behavior during cell division.
    Wong K; Wessels D; Krob SL; Matveia AR; Lin JL; Soll DR; Lin JJ
    Cell Motil Cytoskeleton; 2000 Feb; 45(2):121-32. PubMed ID: 10658208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of mitotically phosphorylated caldesmon.
    Yamakita Y; Yamashiro S; Matsumura F
    J Biol Chem; 1992 Jun; 267(17):12022-9. PubMed ID: 1534804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of caldesmon by p34cdc2 kinase. Identification of phosphorylation sites.
    Mak AS; Carpenter M; Smillie LB; Wang JH
    J Biol Chem; 1991 Oct; 266(30):19971-5. PubMed ID: 1939059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actopaxin is phosphorylated during mitosis and is a substrate for cyclin B1/cdc2 kinase.
    Curtis M; Nikolopoulos SN; Turner CE
    Biochem J; 2002 Apr; 363(Pt 2):233-42. PubMed ID: 11931650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of caldesmon in the regulation of endothelial cytoskeleton and migration.
    Mirzapoiazova T; Kolosova IA; Romer L; Garcia JG; Verin AD
    J Cell Physiol; 2005 Jun; 203(3):520-8. PubMed ID: 15521070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.