BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12613668)

  • 41. Raptor is phosphorylated by cdc2 during mitosis.
    Gwinn DM; Asara JM; Shaw RJ
    PLoS One; 2010 Feb; 5(2):e9197. PubMed ID: 20169205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of cyclin-dependent kinase 1 induces cytokinesis without chromosome segregation in an ECT2 and MgcRacGAP-dependent manner.
    Niiya F; Xie X; Lee KS; Inoue H; Miki T
    J Biol Chem; 2005 Oct; 280(43):36502-9. PubMed ID: 16118207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphorylation of caldesmon by p21-activated kinase. Implications for the Ca(2+) sensitivity of smooth muscle contraction.
    Foster DB; Shen LH; Kelly J; Thibault P; Van Eyk JE; Mak AS
    J Biol Chem; 2000 Jan; 275(3):1959-65. PubMed ID: 10636898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Both N-terminal myosin-binding and C-terminal actin-binding sites on smooth muscle caldesmon are required for caldesmon-mediated inhibition of actin filament velocity.
    Wang Z; Jiang H; Yang ZQ; Chacko S
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11899-904. PubMed ID: 9342334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorylation of Caldesmon by PFTAIRE1 kinase promotes actin binding and formation of stress fibers.
    Leung WK; Ching AK; Wong N
    Mol Cell Biochem; 2011 Apr; 350(1-2):201-6. PubMed ID: 21184254
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1.
    Neef R; Gruneberg U; Kopajtich R; Li X; Nigg EA; Sillje H; Barr FA
    Nat Cell Biol; 2007 Apr; 9(4):436-44. PubMed ID: 17351640
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic interactions between Hsp90 and the Cdc2 mitotic machinery in the fission yeast Schizosaccharomyces pombe.
    Muñoz MJ; Jimenez J
    Mol Gen Genet; 1999 Mar; 261(2):242-50. PubMed ID: 10102358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation.
    Qiao M; Shapiro P; Fosbrink M; Rus H; Kumar R; Passaniti A
    J Biol Chem; 2006 Mar; 281(11):7118-28. PubMed ID: 16407259
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The phenotype of a "Cdc2 kinase target site-deficient" mutant of oncoprotein 18 reveals a role of this protein in cell cycle control.
    Marklund U; Osterman O; Melander H; Bergh A; Gullberg M
    J Biol Chem; 1994 Dec; 269(48):30626-35. PubMed ID: 7982983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the functional domains on the C-terminal region of caldesmon using full-length and mutant caldesmon molecules.
    Wang Z; Horiuchi KY; Chacko S
    J Biol Chem; 1996 Jan; 271(4):2234-42. PubMed ID: 8567684
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Actomyosin cross-linking by caldesmon in non-muscle cells.
    Goncharova EA; Shirinsky VP; Shevelev AY; Marston SB; Vorotnikov AV
    FEBS Lett; 2001 May; 497(2-3):113-7. PubMed ID: 11377424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus.
    Nie S; Kee Y; Bronner-Fraser M
    Mol Biol Cell; 2011 Sep; 22(18):3355-65. PubMed ID: 21795398
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Leupaxin stimulates adhesion and migration of prostate cancer cells through modulation of the phosphorylation status of the actin-binding protein caldesmon.
    Dierks S; von Hardenberg S; Schmidt T; Bremmer F; Burfeind P; Kaulfuß S
    Oncotarget; 2015 May; 6(15):13591-606. PubMed ID: 26079947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression.
    Wells NJ; Watanabe N; Tokusumi T; Jiang W; Verdecia MA; Hunter T
    J Cell Sci; 1999 Oct; 112 ( Pt 19)():3361-71. PubMed ID: 10504341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. cGMP-dependent protein kinase Iβ regulates breast cancer cell migration and invasion via interaction with the actin/myosin-associated protein caldesmon.
    Schwappacher R; Rangaswami H; Su-Yuo J; Hassad A; Spitler R; Casteel DE
    J Cell Sci; 2013 Apr; 126(Pt 7):1626-36. PubMed ID: 23418348
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibition of smooth muscle actomyosin ATPase by caldesmon is associated with caldesmon-induced conformational changes in tropomyosin bound to actin.
    Horiuchi KY; Wang Z; Chacko S
    Biochemistry; 1995 Dec; 34(51):16815-20. PubMed ID: 8527457
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleolin, defective for MPF phosphorylation, localizes normally during mitosis and nucleologenesis.
    Zhu Y; Lu D; DiMario P
    Histochem Cell Biol; 1999 Jun; 111(6):477-87. PubMed ID: 10429970
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Some properties of caldesmon and calponin and the participation of these proteins in regulation of smooth muscle contraction and cytoskeleton formation.
    Gusev NB
    Biochemistry (Mosc); 2001 Oct; 66(10):1112-21. PubMed ID: 11736632
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mutagenesis analysis of functionally important domains within the C-terminal end of smooth muscle caldesmon.
    Wang Z; Chacko S
    J Biol Chem; 1996 Oct; 271(41):25707-14. PubMed ID: 8810349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of the carboxyl-terminal 10-kDa cyanogen bromide fragment of caldesmon as an actin-calmodulin-binding region.
    Bartegi A; Fattoum A; Derancourt J; Kassab R
    J Biol Chem; 1990 Sep; 265(25):15231-8. PubMed ID: 2394719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.