These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12613794)

  • 41. Investigation into the phenomena affecting the retention behavior of basic analytes in chaotropic chromatography: Joint effects of the most relevant chromatographic factors and analytes' molecular properties.
    Čolović J; Kalinić M; Vemić A; Erić S; Malenović A
    J Chromatogr A; 2015 Dec; 1425():150-7. PubMed ID: 26610616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluating the performances of quantitative structure-retention relationship models with different sets of molecular descriptors and databases for high-performance liquid chromatography predictions.
    Wang C; Skibic MJ; Higgs RE; Watson IA; Bui H; Wang J; Cintron JM
    J Chromatogr A; 2009 Jun; 1216(25):5030-8. PubMed ID: 19439313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Importance of retention data from affinity and reverse-phase high-performance liquid chromatography on antitumor activity prediction of imidazoacridinones using QSAR strategy.
    Koba M; Bączek T; Marszałł MP
    J Pharm Biomed Anal; 2012 May; 64-65():87-93. PubMed ID: 22417615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical Models and QSRR in Retention Modeling of Eight Aminopyridines.
    Tumpa A; Kalinić M; Jovanović P; Erić S; Rakić T; Jančić-Stojanović B; Medenica M
    J Chromatogr Sci; 2016 Mar; 54(3):436-44. PubMed ID: 26590237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models.
    Ladiwala A; Xia F; Luo Q; Breneman CM; Cramer SM
    Biotechnol Bioeng; 2006 Apr; 93(5):836-50. PubMed ID: 16276531
    [TBL] [Abstract][Full Text] [Related]  

  • 46. QSRR prediction of chromatographic retention of ethynyl-substituted PAH from semiempirically computed solute descriptors.
    Ledesma EB; Wornat MJ
    Anal Chem; 2000 Nov; 72(21):5437-43. PubMed ID: 11080898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of the retention behavior of barbituric acid derivatives in reversed-phase high-performance liquid chromatography by using quantitative structure-retention relationships.
    Jakab A; Schubert G; Prodan M; Forgács E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Apr; 770(1-2):227-36. PubMed ID: 12013230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting retention times of naturally occurring phenolic compounds in reversed-phase liquid chromatography: a Quantitative Structure-Retention Relationship (QSRR) approach.
    Akbar J; Iqbal S; Batool F; Karim A; Chan KW
    Int J Mol Sci; 2012 Nov; 13(11):15387-400. PubMed ID: 23203132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected beta-blockers.
    Flieger J
    J Chromatogr A; 2010 Jan; 1217(4):540-9. PubMed ID: 19969302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics.
    Baczek T; Kaliszan R
    Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of pesticide retention time in reversed-phase liquid chromatography using quantitative-structure retention relationship models: A comparative study of seven molecular descriptors datasets.
    Parinet J
    Chemosphere; 2021 Jul; 275():130036. PubMed ID: 33676277
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An application of QSRR approach and multiple linear regression method for lipophilicity assessment of flavonoids.
    Zapadka M; Kaczmarek M; Kupcewicz B; Dekowski P; Walkowiak A; Kokotkiewicz A; Łuczkiewicz M; Buciński A
    J Pharm Biomed Anal; 2019 Feb; 164():681-689. PubMed ID: 30476861
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of theoretical and experimental models for characterizing solvent properties using reversed phase liquid chromatography.
    Liu T; Nicholls IA; Öberg T
    Anal Chim Acta; 2011 Sep; 702(1):37-44. PubMed ID: 21819857
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Artificial neural networks analysis used to evaluate the molecular interactions between selected drugs and human alpha1-acid glycoprotein.
    Buciński A; Wnuk M; Goryński K; Giza A; Kochańczyk J; Nowaczyk A; Baczek T; Nasal A
    J Pharm Biomed Anal; 2009 Nov; 50(4):591-6. PubMed ID: 19117712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The molecular retention mechanism in reversed-phase liquid chromatography of meso-ionic compounds by quantitative structure-retention relationships (QSRR).
    Almeida TM; Leitão A; Montanari ML; Montanari CA
    Chem Biodivers; 2005 Dec; 2(12):1691-700. PubMed ID: 17191966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance comparison of partial least squares-related variable selection methods for quantitative structure retention relationships modelling of retention times in reversed-phase liquid chromatography.
    Talebi M; Schuster G; Shellie RA; Szucs R; Haddad PR
    J Chromatogr A; 2015 Dec; 1424():69-76. PubMed ID: 26592563
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modelling of UPLC behaviour of acylcarnitines by quantitative structure-retention relationships.
    D'Archivio AA; Maggi MA; Ruggieri F
    J Pharm Biomed Anal; 2014 Aug; 96():224-30. PubMed ID: 24780923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of retention time in reversed-phase liquid chromatography as a tool for steroid identification.
    Randazzo GM; Tonoli D; Hambye S; Guillarme D; Jeanneret F; Nurisso A; Goracci L; Boccard J; Rudaz S
    Anal Chim Acta; 2016 Apr; 916():8-16. PubMed ID: 27016433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. III. Separation mechanism and gradient optimization.
    Mengerink Y; Peters R; van der Wal S; Claessens HA; Cramers CA
    J Chromatogr A; 2002 Mar; 949(1-2):307-26. PubMed ID: 11999748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.