These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 12613798)
1. Hypercrosslinked polystyrene as a novel type of high-performance liquid chromatography column packing material. Mechanisms of retention. Davankov VA; Sychov CS; Ilyin MM; Sochilina KO J Chromatogr A; 2003 Feb; 987(1-2):67-75. PubMed ID: 12613798 [TBL] [Abstract][Full Text] [Related]
2. Elucidation of retention mechanisms on hypercrosslinked polystyrene used as column packing material for high-performance liquid chromatography. Sychov CS; Ilyin MM; Davankov VA; Sochilina KO J Chromatogr A; 2004 Mar; 1030(1-2):17-24. PubMed ID: 15043249 [TBL] [Abstract][Full Text] [Related]
3. Retentivity, selectivity and thermodynamic behavior of polycyclic aromatic hydrocarbons on charge-transfer and hypercrosslinked stationary phases under conditions of normal phase high performance liquid chromatography. Jiang P; Lucy CA J Chromatogr A; 2016 Mar; 1437():176-182. PubMed ID: 26879454 [TBL] [Abstract][Full Text] [Related]
4. Comparison of hypercrosslinked polystyrene columns for the separation of nitrogen group-types in petroleum using High Performance Liquid Chromatography. Oro NE; Lucy CA J Chromatogr A; 2010 Oct; 1217(40):6178-85. PubMed ID: 20807660 [TBL] [Abstract][Full Text] [Related]
5. Retention mechanism of hypercrosslinked polystyrene silica hybrid phase in normal phase chromatography. Wu D; Nedev GK; Lucy CA J Chromatogr A; 2014 Nov; 1370():50-5. PubMed ID: 25454128 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of high-performance liquid chromatography column retentivity using macromolecular probes I. Berek D J Chromatogr A; 2002 Mar; 950(1-2):75-80. PubMed ID: 11991009 [TBL] [Abstract][Full Text] [Related]
7. Preparation and retention mechanism study of graphene and graphene oxide bonded silica microspheres as stationary phases for high performance liquid chromatography. Zhang X; Chen S; Han Q; Ding M J Chromatogr A; 2013 Sep; 1307():135-43. PubMed ID: 23932030 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds. Jandera P; Bocian S; Molíková M; Buszewski B J Chromatogr A; 2009 Jan; 1216(2):237-48. PubMed ID: 19081105 [TBL] [Abstract][Full Text] [Related]
9. Linear solvation energy relationship (LSER) characterization of the normal phase retention mechanism on hypercrosslinked polystyrenes. Wu D; Jiang P; Lucy CA J Chromatogr A; 2018 Mar; 1543():40-47. PubMed ID: 29486887 [TBL] [Abstract][Full Text] [Related]
10. Application of neutral hydrophobic hypercrosslinked polystyrene to the separation of inorganic anions by ion chromatography. Penner NA; Nesterenko PN J Chromatogr A; 2000 Jul; 884(1-2):41-51. PubMed ID: 10917421 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic Characteristics and Selectivity of the Liquid-Phase Adsorption of Aromatic Compounds on Hypercrosslinked Polystyrene Networks with Ultimate-High Crosslinking Densities by Data of Liquid Chromatography. Saifutdinov BR; Buryak AK Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338826 [TBL] [Abstract][Full Text] [Related]
12. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode. Wu J; Bicker W; Lindner W J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of the chromatographic selectivity of polystyrene-coated zirconia and related reversed-phase materials. Zhao J; Carr PW Anal Chem; 2000 Jan; 72(2):302-9. PubMed ID: 10658323 [TBL] [Abstract][Full Text] [Related]
14. Probing the interaction of solvents with the stationary phase of C18 high-performance liquid chromatographic column material by variable-temperature dependent 129Xe nuclear magnetic resonance spectroscopy. Chagolla D; Mathias EV; Ba Y J Chromatogr A; 2006 Jul; 1121(1):23-31. PubMed ID: 16635493 [TBL] [Abstract][Full Text] [Related]
15. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings. Bicker W; Wu J; Lämmerhofer M; Lindner W J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146 [TBL] [Abstract][Full Text] [Related]
17. Description of retention characteristics of calixarene-bonded stationary phases in dependence of the methanol content in the mobile phase. Schneider C; Jira T J Chromatogr A; 2009 Aug; 1216(35):6285-94. PubMed ID: 19632685 [TBL] [Abstract][Full Text] [Related]
18. Aqueous size-exclusion chromatography of polyelectrolytes on reversed-phase and hydrophilic interaction chromatography columns. Caltabiano AM; Foley JP; Striegel AM J Chromatogr A; 2018 Jan; 1532():161-174. PubMed ID: 29248345 [TBL] [Abstract][Full Text] [Related]
19. Naphthalene sulphonic acids--new test compounds for characterization of the columns for reversed-phase chromatography. Jandera P; Bunceková S; Halama M; Novotná K; Nepras M J Chromatogr A; 2004 Dec; 1059(1-2):61-72. PubMed ID: 15628125 [TBL] [Abstract][Full Text] [Related]