These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12613812)

  • 1. Microchannel-assisted thermal-lens spectrometry for microchip analysis.
    Tamaki E; Hibara A; Tokeshi M; Kitamori T
    J Chromatogr A; 2003 Feb; 987(1-2):197-204. PubMed ID: 12613812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the optimum optical design for pulsed-laser crossed-beam thermal lens spectrometry in infinite and finite samples.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):863-72. PubMed ID: 15036097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser.
    Tanaka Y; Slyadnev MN; Hibara A; Tokeshi M; Kitamori T
    J Chromatogr A; 2000 Oct; 894(1-2):45-51. PubMed ID: 11100846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable thermal lens spectrometry utilizing microchannel-assisted thermal lens spectrometry.
    Tamaki E; Hibara A; Tokeshi M; Kitamori T
    Lab Chip; 2005 Feb; 5(2):129-31. PubMed ID: 15672124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cw-laser thermal lens spectrometry in binary mixtures of water and organic solvents: composition dependence of the steady-state and time-resolved signals.
    Arnaud N; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1817-23. PubMed ID: 15248955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflective thermal lens detection device.
    Mawatari K; Shimoide K
    Lab Chip; 2006 Jan; 6(1):127-30. PubMed ID: 16372079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed-laser crossed-beam thermal lens spectrometry for detection in a microchannel: influence of the size of the excitation beam waist.
    Ghaleb KA; Georges J
    Appl Spectrosc; 2004 Sep; 58(9):1116-21. PubMed ID: 15479529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous-wave-laser versus pulsed-laser excitation for crossed-beam photothermal detection in small volume applications: comparative features.
    Georges J
    Appl Spectrosc; 2005 Sep; 59(9):1103-8. PubMed ID: 18028608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules.
    Hiki S; Mawatari K; Hibara A; Tokeshi M; Kitamori T
    Anal Chem; 2006 Apr; 78(8):2859-63. PubMed ID: 16615803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable thermal lens spectrometer with focusing system.
    Mawatari K; Naganuma Y; Shimoide K
    Anal Chem; 2005 Jan; 77(2):687-92. PubMed ID: 15649072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular dichroism thermal lens microscope for sensitive chiral analysis on microchip.
    Yamauchi M; Mawatari K; Hibara A; Tokeshi M; Kitamori T
    Anal Chem; 2006 Apr; 78(8):2646-50. PubMed ID: 16615775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an integrated direct-contacting optical-fiber microchip with light-emitting diode-induced fluorescence detection.
    Liu C; Cui D; Chen X
    J Chromatogr A; 2007 Nov; 1170(1-2):101-6. PubMed ID: 17915241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal optimisation in cw-laser crossed-beam photothermal spectrometry: influence of the chopping frequency, sample size and flow rate.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2849-55. PubMed ID: 16165023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal lens spectrometry in biochemical analysis.
    Martín-Biosca Y; García-Alvarez-Coque MC; Ramis-Ramos G
    J Biochem Biophys Methods; 1994 Jul; 29(1):1-21. PubMed ID: 7989644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acousto-optical deflection-based laser beam scanning for fluorescence detection on multichannel electrophoretic microchips.
    Huang Z; Munro N; Hühmer AF; Landers JP
    Anal Chem; 1999 Dec; 71(23):5309-14. PubMed ID: 10596211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat coupling effect on photothermal detection with a moving Gaussian excitation beam.
    Dong J; Lu R
    Appl Opt; 2019 Nov; 58(31):8695-8701. PubMed ID: 31873350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of a microextraction system solvent extraction of a Co-2-nitroso-5-dimethylaminophenol complex on a microchip.
    Tokeshi M; Minagawa T; Kitamori T
    J Chromatogr A; 2000 Oct; 894(1-2):19-23. PubMed ID: 11100843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of silver nano particles on the fluorescence quantum yield of Rhodamine 6G determined using dual beam thermal lens method.
    Santhi A; Umadevi M; Ramakrishnan V; Radhakrishnan P; Nampoori VP
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1077-83. PubMed ID: 15084326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed-laser mode-mismatched crossed-beam thermal lens spectrometry within a small capillary tube: effect of flow rate and beam offset on the photothermal signal.
    Chanlon S; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Jun; 58(8):1607-13. PubMed ID: 12166732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.