BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12613908)

  • 21. A new model system for studying lacrimal physiology using cultured lacrimal gland acinar cells on Matrigel rafts.
    Stevenson D; Schechter JE; Nakamuro T; Chang D; Chang NY; Pidgeon M; Zeng H; Mircheff AK; Trousdale MD
    Adv Exp Med Biol; 2002; 506(Pt A):159-63. PubMed ID: 12613903
    [No Abstract]   [Full Text] [Related]  

  • 22. Fluid phase endocytosis by isolated rabbit lacrimal gland acinar cells.
    Gierow JP; Lambert RW; Mircheff AK
    Exp Eye Res; 1995 May; 60(5):511-25. PubMed ID: 7615017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulation with carbachol alters endomembrane distribution and plasma membrane expression of intracellular proteins in lacrimal acinar cells.
    Yang T; Zeng H; Zhang J; Okamoto CT; Warren DW; Wood RL; Bachmann M; Mircheff AK
    Exp Eye Res; 1999 Dec; 69(6):651-61. PubMed ID: 10620394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the microtubule cytoskeleton in traffic of EGF through the lacrimal acinar cell endomembrane network.
    Xie J; Qian L; Wang Y; Hamm-Alvarez SF; Mircheff AK
    Exp Eye Res; 2004 Jun; 78(6):1093-106. PubMed ID: 15109916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered traffic to the lysosome in an ex vivo lacrimal acinar cell model for chronic muscarinic receptor stimulation.
    Qian L; Xie J; Rose CM; Sou E; Zeng H; Hamm-Alvarez SF; Mircheff AK
    Exp Eye Res; 2004 Nov; 79(5):665-75. PubMed ID: 15500825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytoskeleton of intestinal goblet cells: role of microtubules in baseline secretion.
    Oliver MG; Specian RD
    Am J Physiol; 1991 Jun; 260(6 Pt 1):G850-7. PubMed ID: 1676242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrin adhesion in regulation of lacrimal gland acinar cell secretion.
    Andersson SV; Hamm-Alvarez SF; Gierow JP
    Exp Eye Res; 2006 Sep; 83(3):543-53. PubMed ID: 16631165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diverse perturbations may alter the lacrimal acinar cell autoantigenic spectra.
    Mircheff AK; Xie J; Qian L; Hamm-Alvarez SF
    DNA Cell Biol; 2002; 21(5-6):435-42. PubMed ID: 12167246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 cells.
    Zegers MM; Zaal KJ; van IJzendoorn SC; Klappe K; Hoekstra D
    Mol Biol Cell; 1998 Jul; 9(7):1939-49. PubMed ID: 9658181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cultivation of lacrimal gland acinar cells in a microgravity environment.
    Schrader S; Kremling C; Klinger M; Laqua H; Geerling G
    Br J Ophthalmol; 2009 Aug; 93(8):1121-5. PubMed ID: 19416938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscarinic and alpha-adrenergic stimulation of Na and Ca uptake by dispersed lacrimal cells.
    Parod RJ; Leslie BA; Putney JW
    Am J Physiol; 1980 Aug; 239(2):G99-105. PubMed ID: 7406052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans.
    Yokoyama K; Kaji H; Nishimura K; Miyaji M
    J Gen Microbiol; 1990 Jun; 136(6):1067-75. PubMed ID: 2200842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis.
    Wu K; Jerdeva GV; da Costa SR; Sou E; Schechter JE; Hamm-Alvarez SF
    Exp Eye Res; 2006 Jul; 83(1):84-96. PubMed ID: 16530759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The roles of actin cytoskeleton and microtubules for membrane recycling of a food vacuole in Tetrahymena thermophila.
    Sugita M; Nakano K; Sato M; Toyooka K; Numata O
    Cell Motil Cytoskeleton; 2009 Jul; 66(7):371-7. PubMed ID: 19418560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity.
    Bornens M; Paintrand M; Celati C
    J Cell Biol; 1989 Sep; 109(3):1071-83. PubMed ID: 2570076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Traffic of major histocompatibility complex class II molecules in rabbit lacrimal gland acinar cells.
    Mircheff AK; Gierow JP; Wood RL
    Invest Ophthalmol Vis Sci; 1994 Oct; 35(11):3943-51. PubMed ID: 7928193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adenosine A2 receptor presence and synergy with cholinergic stimulation in rabbit lacrimal gland.
    Carlsson SK; Edman MC; Delbro D; Gierow JP
    Curr Eye Res; 2010 Jun; 35(6):466-74. PubMed ID: 20465439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gs and Gq/11 couple vasoactive intestinal peptide and cholinergic stimulation to lacrimal secretion.
    Meneray MA; Fields TY; Bennett DJ
    Invest Ophthalmol Vis Sci; 1997 May; 38(6):1261-70. PubMed ID: 9152245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypertonicity-induced projections reflect cell polarity in mouse metaphase II oocytes: involvement of microtubules, microfilaments, and chromosomes.
    Liu JL; Sung LY; Tian XC; Yang X
    Biol Reprod; 2002 Dec; 67(6):1853-63. PubMed ID: 12444063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlations between the functional integrity of the endoplasmic reticulum and polarized Ca2+ signalling in mouse lacrimal acinar cells: a role for inositol 1,3,4,5-tetrakisphosphate.
    Harmer AR; Gallacher DV; Smith PM
    Biochem J; 2002 Oct; 367(Pt 1):137-43. PubMed ID: 12117415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.