BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12614150)

  • 1. Role of a heterogeneous free state in the formation of a specific RNA-theophylline complex.
    Jucker FM; Phillips RM; McCallum SA; Pardi A
    Biochemistry; 2003 Mar; 42(9):2560-7. PubMed ID: 12614150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA.
    Zimmermann GR; Shields TP; Jenison RD; Wick CL; Pardi A
    Biochemistry; 1998 Jun; 37(25):9186-92. PubMed ID: 9636066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mg(2+)-dependent conformational changes in the hammerhead ribozyme.
    Menger M; Tuschl T; Eckstein F; Porschke D
    Biochemistry; 1996 Nov; 35(47):14710-6. PubMed ID: 8942631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the kinetics of formation of the bacteriophage MS2 translational operator complex: identification of a protein conformer unable to bind RNA.
    Lago H; Parrott AM; Moss T; Stonehouse NJ; Stockley PG
    J Mol Biol; 2001 Feb; 305(5):1131-44. PubMed ID: 11162119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state.
    Warfield BM; Anderson PC
    PLoS One; 2017; 12(4):e0176229. PubMed ID: 28437473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of rat polymerase beta-dsDNA interactions. Fluorescence stopped-flow analysis of the cooperative ligand binding to a two-site one-dimensional lattice.
    Galletto R; Jezewska MJ; Bujalowski W
    Biochemistry; 2005 Feb; 44(4):1251-67. PubMed ID: 15667219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tertiary structure of an RNA pseudoknot is stabilized by "diffuse" Mg2+ ions.
    Soto AM; Misra V; Draper DE
    Biochemistry; 2007 Mar; 46(11):2973-83. PubMed ID: 17315982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR structure of varkud satellite ribozyme stem-loop V in the presence of magnesium ions and localization of metal-binding sites.
    Campbell DO; Bouchard P; Desjardins G; Legault P
    Biochemistry; 2006 Sep; 45(35):10591-605. PubMed ID: 16939211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods.
    Gouda H; Kuntz ID; Case DA; Kollman PA
    Biopolymers; 2003 Jan; 68(1):16-34. PubMed ID: 12579577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetics of ligand binding by an adenine-sensing riboswitch.
    Wickiser JK; Cheah MT; Breaker RR; Crothers DM
    Biochemistry; 2005 Oct; 44(40):13404-14. PubMed ID: 16201765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Aminopurine-modified abasic-site-containing duplex DNA for highly selective detection of theophylline.
    Li M; Sato Y; Nishizawa S; Seino T; Nakamura K; Teramae N
    J Am Chem Soc; 2009 Feb; 131(7):2448-9. PubMed ID: 19191489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic characterization of the HDV genomic ribozyme: classifying the catalytic and structural metal ion sites within a multichannel reaction mechanism.
    Nakano S; Cerrone AL; Bevilacqua PC
    Biochemistry; 2003 Mar; 42(10):2982-94. PubMed ID: 12627964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast dynamics show that the theophylline and 3-methylxanthine aptamers employ a conformational capture mechanism for binding their ligands.
    Lee SW; Zhao L; Pardi A; Xia T
    Biochemistry; 2010 Apr; 49(13):2943-51. PubMed ID: 20214401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusually short RNA sequences: design of a 13-mer RNA that selectively binds and recognizes theophylline.
    Anderson PC; Mecozzi S
    J Am Chem Soc; 2005 Apr; 127(15):5290-1. PubMed ID: 15826145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tertiary structure of the hairpin ribozyme is formed through a slow conformational search.
    Pljevaljcić G; Klostermeier D; Millar DP
    Biochemistry; 2005 Mar; 44(12):4870-6. PubMed ID: 15779913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimum sequence requirements for selective RNA-ligand binding: a molecular mechanics algorithm using molecular dynamics and free-energy techniques.
    Anderson PC; Mecozzi S
    J Comput Chem; 2006 Nov; 27(14):1631-40. PubMed ID: 16900493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the conformation of the nucleic acid framework of the T7 RNA polymerase elongation complex in solution using low-energy CD and fluorescence spectroscopy.
    Datta K; Johnson NP; von Hippel PH
    J Mol Biol; 2006 Jul; 360(4):800-13. PubMed ID: 16784751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of magnesium ions in RNA stability.
    Misra VK; Draper DE
    Biopolymers; 1998; 48(2-3):113-35. PubMed ID: 10333741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment).
    Purohit V; Grindley ND; Joyce CM
    Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer.
    Zimmermann GR; Wick CL; Shields TP; Jenison RD; Pardi A
    RNA; 2000 May; 6(5):659-67. PubMed ID: 10836787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.