BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2374 related articles for article (PubMed ID: 12614197)

  • 1. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the His57-Glu214 ionic couple located in the active site of Mycobacterium tuberculosis FprA.
    Pennati A; Razeto A; de Rosa M; Pandini V; Vanoni MA; Mattevi A; Coda A; Aliverti A; Zanetti G
    Biochemistry; 2006 Jul; 45(29):8712-20. PubMed ID: 16846214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential.
    Shen AL; Kasper CB
    Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterium tuberculosis FprA, a novel bacterial NADPH-ferredoxin reductase.
    Fischer F; Raimondi D; Aliverti A; Zanetti G
    Eur J Biochem; 2002 Jun; 269(12):3005-13. PubMed ID: 12071965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of salt and pH on the reductive half-reaction of Mycobacterium tuberculosis FprA with NADPH.
    Pennati A; Zanetti G; Aliverti A; Gadda G
    Biochemistry; 2008 Mar; 47(11):3418-25. PubMed ID: 18293930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a ferredoxin reductase for the CYP199A2 system from Rhodopseudomonas palustris.
    Xu F; Bell SG; Peng Y; Johnson EO; Bartlam M; Rao Z; Wong LL
    Proteins; 2009 Dec; 77(4):867-80. PubMed ID: 19626710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains.
    Wolthers KR; Basran J; Munro AW; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI.
    Lawson RJ; von Wachenfeldt C; Haq I; Perkins J; Munro AW
    Biochemistry; 2004 Oct; 43(39):12390-409. PubMed ID: 15449930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of coenzyme binding and selectivity determinants in Mycobacterium tuberculosis flavoprotein reductase A: analysis of Arg(199) and Arg(200) mutants at the NADP(H) 2'-phosphate binding site.
    Sabri M; Dunford AJ; McLean KJ; Neeli R; Scrutton NS; Leys D; Munro AW
    Biochem J; 2009 Jan; 417(1):103-12. PubMed ID: 18767989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic properties of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase.
    Axley MJ; Fairman R; Yanchunas J; Villafranca JJ; Robertson JG
    Biochemistry; 1997 Jan; 36(4):812-22. PubMed ID: 9020779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase.
    Olteanu H; Wolthers KR; Munro AW; Scrutton NS; Banerjee R
    Biochemistry; 2004 Feb; 43(7):1988-97. PubMed ID: 14967039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trp(359) regulates flavin thermodynamics and coenzyme selectivity in Mycobacterium tuberculosis FprA.
    Neeli R; Sabri M; McLean KJ; Dunford AJ; Scrutton NS; Leys D; Munro AW
    Biochem J; 2008 May; 411(3):563-70. PubMed ID: 18237273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 119.