These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 12614551)
1. Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms. Doniger S; Hofmann T; Yeh J J Comput Biol; 2002; 9(6):849-64. PubMed ID: 12614551 [TBL] [Abstract][Full Text] [Related]
2. In-silico prediction of blood-brain barrier permeability. Yan A; Liang H; Chong Y; Nie X; Yu C SAR QSAR Environ Res; 2013 Jan; 24(1):61-74. PubMed ID: 23092117 [TBL] [Abstract][Full Text] [Related]
3. Predicting blood-brain barrier penetration of drugs using an artificial neural network. Fu XC; Wang GP; Liang WQ; Yu QS Pharmazie; 2004 Feb; 59(2):126-30. PubMed ID: 15025181 [TBL] [Abstract][Full Text] [Related]
4. A method to predict different mechanisms for blood-brain barrier permeability of CNS activity compounds in Chinese herbs using support vector machine. Jiang L; Chen J; He Y; Zhang Y; Li G J Bioinform Comput Biol; 2016 Feb; 14(1):1650005. PubMed ID: 26632324 [TBL] [Abstract][Full Text] [Related]
5. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. Byvatov E; Fechner U; Sadowski J; Schneider G J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437 [TBL] [Abstract][Full Text] [Related]
6. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction. Zhang D; Xiao J; Zhou N; Zheng M; Luo X; Jiang H; Chen K Biomed Res Int; 2015; 2015():292683. PubMed ID: 26504797 [TBL] [Abstract][Full Text] [Related]
7. Prediction of P-glycoprotein substrates by a support vector machine approach. Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858 [TBL] [Abstract][Full Text] [Related]
8. Drug/nondrug classification using Support Vector Machines with various feature selection strategies. Korkmaz S; Zararsiz G; Goksuluk D Comput Methods Programs Biomed; 2014 Nov; 117(2):51-60. PubMed ID: 25224081 [TBL] [Abstract][Full Text] [Related]
9. A Recurrent Neural Network model to predict blood-brain barrier permeability. Alsenan S; Al-Turaiki I; Hafez A Comput Biol Chem; 2020 Dec; 89():107377. PubMed ID: 33010784 [TBL] [Abstract][Full Text] [Related]
10. A Simple Method to Predict Blood-Brain Barrier Permeability of Drug- Like Compounds Using Classification Trees. Castillo-Garit JA; Casanola-Martin GM; Le-Thi-Thu H; Pham-The H; Barigye SJ Med Chem; 2017; 13(7):664-669. PubMed ID: 28185535 [TBL] [Abstract][Full Text] [Related]
11. Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-glucuronosyltransferase isoforms. Sorich MJ; Miners JO; McKinnon RA; Winkler DA; Burden FR; Smith PA J Chem Inf Comput Sci; 2003; 43(6):2019-24. PubMed ID: 14632453 [TBL] [Abstract][Full Text] [Related]
12. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Balabin RM; Lomakina EI Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265 [TBL] [Abstract][Full Text] [Related]
13. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology. Bakhtiarizadeh MR; Moradi-Shahrbabak M; Ebrahimi M; Ebrahimie E J Theor Biol; 2014 Sep; 356():213-22. PubMed ID: 24819464 [TBL] [Abstract][Full Text] [Related]
14. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Golmohammadi H; Dashtbozorgi Z; Acree WE Eur J Pharm Sci; 2012 Sep; 47(2):421-9. PubMed ID: 22771548 [TBL] [Abstract][Full Text] [Related]
15. In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. Zhang X; Liu T; Fan X; Ai N J Mol Graph Model; 2017 Aug; 75():347-354. PubMed ID: 28628860 [TBL] [Abstract][Full Text] [Related]
16. [Rule induction algorithm for brain glioma using support vector machine]. Li G; Yang J; Wang J; Geng D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):410-2. PubMed ID: 16706378 [TBL] [Abstract][Full Text] [Related]
17. Support vector machine based training of multilayer feedforward neural networks as optimized by particle swarm algorithm: application in QSAR studies of bioactivity of organic compounds. Lin WQ; Jiang JH; Zhou YP; Wu HL; Shen GL; Yu RQ J Comput Chem; 2007 Jan; 28(2):519-27. PubMed ID: 17186488 [TBL] [Abstract][Full Text] [Related]
18. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. Zernov VV; Balakin KV; Ivaschenko AA; Savchuk NP; Pletnev IV J Chem Inf Comput Sci; 2003; 43(6):2048-56. PubMed ID: 14632457 [TBL] [Abstract][Full Text] [Related]
19. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood-brain barrier (BBB) permeability. Lingineni K; Belekar V; Tangadpalliwar SR; Garg P Mol Divers; 2017 May; 21(2):355-365. PubMed ID: 28050687 [TBL] [Abstract][Full Text] [Related]