BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 12614584)

  • 1. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord.
    Plant GW; Christensen CL; Oudega M; Bunge MB
    J Neurotrauma; 2003 Jan; 20(1):1-16. PubMed ID: 12614584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonergic innervation of the caudal spinal stump in rats after complete spinal transection: effect of olfactory ensheathing glia.
    Takeoka A; Kubasak MD; Zhong H; Roy RR; Phelps PE
    J Comp Neurol; 2009 Aug; 515(6):664-76. PubMed ID: 19496067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord.
    Xu XM; Guénard V; Kleitman N; Bunge MB
    J Comp Neurol; 1995 Jan; 351(1):145-60. PubMed ID: 7896937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord.
    Houlé JD; Reier PJ
    J Comp Neurol; 1988 Mar; 269(4):535-47. PubMed ID: 2453536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord.
    Chen A; Xu XM; Kleitman N; Bunge MB
    Exp Neurol; 1996 Apr; 138(2):261-76. PubMed ID: 8620925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord.
    Xu XM; Guénard V; Kleitman N; Aebischer P; Bunge MB
    Exp Neurol; 1995 Aug; 134(2):261-72. PubMed ID: 7556546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord.
    Reier PJ; Stokes BT; Thompson FJ; Anderson DK
    Exp Neurol; 1992 Jan; 115(1):177-88. PubMed ID: 1370221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering novel spinal circuits to promote recovery after spinal injury.
    Campos L; Meng Z; Hu G; Chiu DT; Ambron RT; Martin JH
    J Neurosci; 2004 Mar; 24(9):2090-101. PubMed ID: 14999060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafting in acute spinal cord injury: morphological and immunological aspects of transplanted adult rat enteric ganglia.
    Jaeger CB; Toombs JP; Borgens RB
    Neuroscience; 1993 Jan; 52(2):333-46. PubMed ID: 8450950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridging a complete transection lesion of adult rat spinal cord with growth factor-treated nitrocellulose implants.
    Houle JD; Ziegler MK
    J Neural Transplant Plast; 1994; 5(2):115-24. PubMed ID: 7703291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins.
    Coumans JV; Lin TT; Dai HN; MacArthur L; McAtee M; Nash C; Bregman BS
    J Neurosci; 2001 Dec; 21(23):9334-44. PubMed ID: 11717367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of the glial environment of a photochemically induced lesion in the rat spinal cord by transplantation of mixed glial cells.
    Olby NJ; Blakemore WF
    J Neurocytol; 1996 Aug; 25(8):481-98. PubMed ID: 8899569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection.
    Bregman BS
    Brain Res; 1987 Aug; 431(2):265-79. PubMed ID: 3620991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain.
    Franz S; Ciatipis M; Pfeifer K; Kierdorf B; Sandner B; Bogdahn U; Blesch A; Winner B; Weidner N
    PLoS One; 2014; 9(7):e102896. PubMed ID: 25050623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents.
    Aguayo AJ; David S; Bray GM
    J Exp Biol; 1981 Dec; 95():231-40. PubMed ID: 7334319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apparent diffusion coefficients in spinal cord transplants and surrounding white matter correlate with degree of axonal dieback after injury in rats.
    Schwartz ED; Chin CL; Shumsky JS; Jawad AF; Brown BK; Wehrli S; Tessler A; Murray M; Hackney DB
    AJNR Am J Neuroradiol; 2005 Jan; 26(1):7-18. PubMed ID: 15661691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal regeneration contributes to repair of injured brainstem-spinal neurons in embryonic chick.
    Hasan SJ; Keirstead HS; Muir GD; Steeves JD
    J Neurosci; 1993 Feb; 13(2):492-507. PubMed ID: 8426225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats.
    Barnett SC; Riddell JS
    J Anat; 2004 Jan; 204(1):57-67. PubMed ID: 14690478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function.
    Cheng H; Cao Y; Olson L
    Science; 1996 Jul; 273(5274):510-3. PubMed ID: 8662542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury.
    Brambilla R; Hurtado A; Persaud T; Esham K; Pearse DD; Oudega M; Bethea JR
    J Neurochem; 2009 Jul; 110(2):765-78. PubMed ID: 19522780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.