These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 12615064)
21. Nitric oxide transport on sickle cell hemoglobin: where does it bind? Gladwin MT; Ognibene FP; Shelhamer JH; Pease-Fye ME; Noguchi CT; Rodgers GP; Schechter AN Free Radic Res; 2001 Aug; 35(2):175-80. PubMed ID: 11697198 [TBL] [Abstract][Full Text] [Related]
22. Stabilization of the T-state of ferrous human adult and fetal hemoglobin by Ln(III) complexes: a thermodynamic study. Aime S; Fasano M; Paoletti S; Bellelli A; Coletta M; Ascenzi P J Inorg Biochem; 1998 Aug; 71(1-2):37-43. PubMed ID: 9755490 [TBL] [Abstract][Full Text] [Related]
23. Effects of S-nitrosation on oxygen binding by normal and sickle cell hemoglobin. Bonaventura C; Ferruzzi G; Tesh S; Stevens RD J Biol Chem; 1999 Aug; 274(35):24742-8. PubMed ID: 10455144 [TBL] [Abstract][Full Text] [Related]
24. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Premont RT; Reynolds JD; Zhang R; Stamler JS Circ Res; 2020 Jan; 126(1):129-158. PubMed ID: 31590598 [TBL] [Abstract][Full Text] [Related]
25. Effects of S-nitrosation and cross-linking of hemoglobin on hypoxic pulmonary vasoconstriction in isolated rat lungs. Deem S; Kim JU; Manjula BN; Acharya AS; Kerr ME; Patel RP; Gladwin MT; Swenson ER Circ Res; 2002 Oct; 91(7):626-32. PubMed ID: 12364391 [TBL] [Abstract][Full Text] [Related]
26. A comparative study of the temperature dependence of the oxygen-binding properties of mammalian hemoglobins. Coletta M; Clementi ME; Ascenzi P; Petruzzelli R; Condò SG; Giardina B Eur J Biochem; 1992 Mar; 204(3):1155-7. PubMed ID: 1551393 [TBL] [Abstract][Full Text] [Related]
27. Effects of fetal hemoglobin on accurate measurements of oxygen saturation in neonates. Shiao SY J Perinat Neonatal Nurs; 2005; 19(4):348-61. PubMed ID: 16292136 [TBL] [Abstract][Full Text] [Related]
28. Possibilities of Using Fetal Hemoglobin as a Platform for Producing Hemoglobin-Based Oxygen Carriers (HBOCs). Ratanasopa K; Cedervall T; Bülow L Adv Exp Med Biol; 2016; 876():445-453. PubMed ID: 26782244 [TBL] [Abstract][Full Text] [Related]
29. Critical redox and allosteric aspects of nitric oxide interactions with hemoglobin. Bonaventura C; Fago A; Henkens R; Crumbliss AL Antioxid Redox Signal; 2004 Dec; 6(6):979-91. PubMed ID: 15548895 [TBL] [Abstract][Full Text] [Related]
30. N-terminal contributions of the gamma-subunit of fetal hemoglobin to its tetramer strength: remote effects at subunit contacts. Yagami T; Ballard BT; Padovan JC; Chait BT; Popowicz AM; Manning JM Protein Sci; 2002 Jan; 11(1):27-35. PubMed ID: 11742119 [TBL] [Abstract][Full Text] [Related]
31. The effect of organic cosolvents on the oxygen affinity of fetal hemoglobin. Relevance of protein-solvent interactions to the functional properties. Militello V; Vitrano E; Cupane A Biophys Chem; 1991 Feb; 39(2):161-9. PubMed ID: 1711905 [TBL] [Abstract][Full Text] [Related]
32. S-Nitrosohemoglobin is unstable in the reductive erythrocyte environment and lacks O2/NO-linked allosteric function. Gladwin MT; Wang X; Reiter CD; Yang BK; Vivas EX; Bonaventura C; Schechter AN J Biol Chem; 2002 Aug; 277(31):27818-28. PubMed ID: 12023289 [TBL] [Abstract][Full Text] [Related]
33. Oxygen affinity of hemoglobins F and A partially oxidized to methemoglobin: influence of 2,3-diphosphoglycerate. Versmold HT; Fürst K; Betke K; Riegel KP Pediatr Res; 1978 Feb; 12(2):133-8. PubMed ID: 25408 [No Abstract] [Full Text] [Related]
34. Effects of S-nitrosation on hemoglobin-induced microvascular damage. Burke TK; Teng X; Patel RP; Baldwin AL Antioxid Redox Signal; 2006; 8(7-8):1093-101. PubMed ID: 16910757 [TBL] [Abstract][Full Text] [Related]
35. Essential Role of Hemoglobin βCys93 in Cardiovascular Physiology. Premont RT; Stamler JS Physiology (Bethesda); 2020 Jul; 35(4):234-243. PubMed ID: 32490751 [TBL] [Abstract][Full Text] [Related]
36. Preparation and characterization of SNO-PEG-hemoglobin as a candidate for oxygen transporting material. Nakai K; Togashi H; Yasukohchi T; Sakuma I; Fujii S; Yoshioka M; Satoh H; Kitabatake A Int J Artif Organs; 2001 May; 24(5):322-8. PubMed ID: 11420882 [TBL] [Abstract][Full Text] [Related]
37. Relative role of heme nitrosylation and beta-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Gladwin MT; Ognibene FP; Pannell LK; Nichols JS; Pease-Fye ME; Shelhamer JH; Schechter AN Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9943-8. PubMed ID: 10954746 [TBL] [Abstract][Full Text] [Related]
38. A biochemical and biophysical characterization of recombinant mutants of fetal hemoglobin and their interaction with sickle cell hemoglobin. Larson SC; Fisher GW; Ho NT; Shen TJ; Ho C Biochemistry; 1999 Jul; 38(29):9549-55. PubMed ID: 10413533 [TBL] [Abstract][Full Text] [Related]
39. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals. Fago A; Parraga DG; Petersen EE; Kristensen N; Giouri L; Jensen FB Comp Biochem Physiol A Mol Integr Physiol; 2017 Mar; 205():35-40. PubMed ID: 27993597 [TBL] [Abstract][Full Text] [Related]
40. The cooperativity of human fetal and adult hemoglobins is optimized: a consideration based on the effectiveness of the Bohr shift. Zhang Y; Miki M; Sasagawa K; Kobayashi M; Imai K; Kobayashi M Zoolog Sci; 2003 Jan; 20(1):23-8. PubMed ID: 12560597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]