BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12615215)

  • 1. Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells.
    Greenberg JT; Vinatzer BA
    Curr Opin Microbiol; 2003 Feb; 6(1):20-8. PubMed ID: 12615215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae.
    Guttman DS; Vinatzer BA; Sarkar SF; Ranall MV; Kettler G; Greenberg JT
    Science; 2002 Mar; 295(5560):1722-6. PubMed ID: 11872842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translocation and functional analysis of Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III secretion system effectors reveals two novel effector families of the Pseudomonas syringae complex.
    Matas IM; Castañeda-Ojeda MP; Aragón IM; Antúnez-Lamas M; Murillo J; Rodríguez-Palenzuela P; López-Solanilla E; Ramos C
    Mol Plant Microbe Interact; 2014 May; 27(5):424-36. PubMed ID: 24329173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants.
    Vinatzer BA; Teitzel GM; Lee MW; Jelenska J; Hotton S; Fairfax K; Jenrette J; Greenberg JT
    Mol Microbiol; 2006 Oct; 62(1):26-44. PubMed ID: 16942603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomic insights into the epidemiology and virulence of plant pathogenic pseudomonads from Turkey.
    Dillon MM; Ruiz-Bedoya T; Bundalovic-Torma C; Guttman KM; Kwak H; Middleton MA; Wang PW; Horuz S; Aysan Y; Guttman DS
    Microb Genom; 2021 Jul; 7(7):. PubMed ID: 34227931
    [No Abstract]   [Full Text] [Related]  

  • 6. Type III protein secretion in Pseudomonas syringae.
    Jin Q; Thilmony R; Zwiesler-Vollick J; He SY
    Microbes Infect; 2003 Apr; 5(4):301-10. PubMed ID: 12706443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas syringae CC1557: a highly virulent strain with an unusually small type III effector repertoire that includes a novel effector.
    Hockett KL; Nishimura MT; Karlsrud E; Dougherty K; Baltrus DA
    Mol Plant Microbe Interact; 2014 Sep; 27(9):923-32. PubMed ID: 24835253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates.
    Baltrus DA; Nishimura MT; Romanchuk A; Chang JH; Mukhtar MS; Cherkis K; Roach J; Grant SR; Jones CD; Dangl JL
    PLoS Pathog; 2011 Jul; 7(7):e1002132. PubMed ID: 21799664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses.
    Jelenska J; Yao N; Vinatzer BA; Wright CM; Brodsky JL; Greenberg JT
    Curr Biol; 2007 Mar; 17(6):499-508. PubMed ID: 17350264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas syringae type III effector repertoires: last words in endless arguments.
    Lindeberg M; Cunnac S; Collmer A
    Trends Microbiol; 2012 Apr; 20(4):199-208. PubMed ID: 22341410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function.
    Nimchuk ZL; Fisher EJ; Desveaux D; Chang JH; Dangl JL
    Mol Plant Microbe Interact; 2007 Apr; 20(4):346-57. PubMed ID: 17427805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola.
    Rohmer L; Kjemtrup S; Marchesini P; Dangl JL
    Mol Microbiol; 2003 Mar; 47(6):1545-62. PubMed ID: 12622811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-genome analysis to identify type III-secreted effectors.
    Vinatzer BA; Greenberg JT
    Methods Mol Biol; 2007; 354():19-34. PubMed ID: 17172741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular basis of host specialization in bean pathovars of Pseudomonas syringae.
    Baltrus DA; Nishimura MT; Dougherty KM; Biswas S; Mukhtar MS; Vicente J; Holub EB; Dangl JL
    Mol Plant Microbe Interact; 2012 Jul; 25(7):877-88. PubMed ID: 22414441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: evidence for integron-like assembly from transposed gene cassettes.
    Charity JC; Pak K; Delwiche CF; Hutcheson SW
    Mol Plant Microbe Interact; 2003 Jun; 16(6):495-507. PubMed ID: 12795376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The VirPphA/AvrPtoB family of type III effectors in Pseudomonas syringae.
    Oguiza JA; Asensio AC
    Res Microbiol; 2005 Apr; 156(3):298-303. PubMed ID: 15808932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic analysis of Pseudomonas amygdali pv. lachrymans NM002: Insights into its potential virulence genes and putative invasion determinants.
    Li L; Yuan L; Shi Y; Xie X; Chai A; Wang Q; Li B
    Genomics; 2019 Dec; 111(6):1493-1503. PubMed ID: 30336277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants.
    Xin XF; He SY
    Annu Rev Phytopathol; 2013; 51():473-98. PubMed ID: 23725467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple lessons from the multiple functions of a regulator of type III secretion system assembly in the plant pathogen Pseudomonas syringae.
    Wei HL; Collmer A
    Mol Microbiol; 2012 Jul; 85(2):195-200. PubMed ID: 22646515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virulence determinants of Pseudomonas syringae strains isolated from grasses in the context of a small type III effector repertoire.
    Dudnik A; Dudler R
    BMC Microbiol; 2014 Dec; 14():304. PubMed ID: 25472590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.