BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12615215)

  • 21. Virulence determinants of Pseudomonas syringae strains isolated from grasses in the context of a small type III effector repertoire.
    Dudnik A; Dudler R
    BMC Microbiol; 2014 Dec; 14():304. PubMed ID: 25472590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25.
    Vinatzer BA; Jelenska J; Greenberg JT
    Mol Plant Microbe Interact; 2005 Aug; 18(8):877-88. PubMed ID: 16134900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts.
    Morgan RL; Zhou H; Lehto E; Nguyen N; Bains A; Wang X; Ma W
    Mol Microbiol; 2010 Apr; 76(2):437-55. PubMed ID: 20233307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae.
    Nimchuk Z; Marois E; Kjemtrup S; Leister RT; Katagiri F; Dangl JL
    Cell; 2000 May; 101(4):353-63. PubMed ID: 10830163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems.
    Zhou H; Morgan RL; Guttman DS; Ma W
    Mol Plant Microbe Interact; 2009 Feb; 22(2):176-89. PubMed ID: 19132870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas.
    Mithani A; Hein J; Preston GM
    Mol Biol Evol; 2011 Jan; 28(1):483-99. PubMed ID: 20709733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The targeting of plant cellular systems by injected type III effector proteins.
    Lewis JD; Guttman DS; Desveaux D
    Semin Cell Dev Biol; 2009 Dec; 20(9):1055-63. PubMed ID: 19540926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative genomics of host-specific virulence in Pseudomonas syringae.
    Sarkar SF; Gordon JS; Martin GB; Guttman DS
    Genetics; 2006 Oct; 174(2):1041-56. PubMed ID: 16951068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae.
    Rohmer L; Guttman DS; Dangl JL
    Genetics; 2004 Jul; 167(3):1341-60. PubMed ID: 15280247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective.
    O'Brien HE; Thakur S; Guttman DS
    Annu Rev Phytopathol; 2011; 49():269-89. PubMed ID: 21568703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying
    Lee AH; Bastedo DP; Youn JY; Lo T; Middleton MA; Kireeva I; Lee JY; Sharifpoor S; Baryshnikova A; Zhang J; Wang PW; Peisajovich SG; Constanzo M; Andrews BJ; Boone CM; Desveaux D; Guttman DS
    G3 (Bethesda); 2019 Feb; 9(2):535-547. PubMed ID: 30573466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria.
    Grant SR; Fisher EJ; Chang JH; Mole BM; Dangl JL
    Annu Rev Microbiol; 2006; 60():425-49. PubMed ID: 16753033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytopathogen type III effectors as probes of biological systems.
    Lee AH; Middleton MA; Guttman DS; Desveaux D
    Microb Biotechnol; 2013 May; 6(3):230-40. PubMed ID: 23433088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ShcA protein is a molecular chaperone that assists in the secretion of the HopPsyA effector from the type III (Hrp) protein secretion system of Pseudomonas syringae.
    van Dijk K; Tam VC; Records AR; Petnicki-Ocwieja T; Alfano JR
    Mol Microbiol; 2002 Jun; 44(6):1469-81. PubMed ID: 12067337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene Ontology for type III effectors: capturing processes at the host-pathogen interface.
    Lindeberg M; Collmer A
    Trends Microbiol; 2009 Jul; 17(7):304-11. PubMed ID: 19576777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatiotemporal Monitoring of
    Park E; Lee HY; Woo J; Choi D; Dinesh-Kumar SP
    Plant Cell; 2017 Jul; 29(7):1571-1584. PubMed ID: 28619883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations.
    Alfano JR; Bauer DW; Milos TM; Collmer A
    Mol Microbiol; 1996 Feb; 19(4):715-28. PubMed ID: 8820642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis.
    Ravindran A; Jalan N; Yuan JS; Wang N; Gross DC
    Microbiologyopen; 2015 Aug; 4(4):553-73. PubMed ID: 25940918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential modulation of plant immune responses by diverse members of the Pseudomonas savastanoi pv. savastanoi HopAF type III effector family.
    Castañeda-Ojeda MP; López-Solanilla E; Ramos C
    Mol Plant Pathol; 2017 Jun; 18(5):625-634. PubMed ID: 27116193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Pseudomonas viridiflava phylogroups in the P. syringae species complex are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits.
    Bartoli C; Berge O; Monteil CL; Guilbaud C; Balestra GM; Varvaro L; Jones C; Dangl JL; Baltrus DA; Sands DC; Morris CE
    Environ Microbiol; 2014 Jul; 16(7):2301-15. PubMed ID: 24612372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.