BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 12615312)

  • 1. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa.
    Roberts CW; McLeod R; Rice DW; Ginger M; Chance ML; Goad LJ
    Mol Biochem Parasitol; 2003 Feb; 126(2):129-42. PubMed ID: 12615312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites.
    Urbina JA
    Parasitology; 1997; 114 Suppl():S91-9. PubMed ID: 9309771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the sterol composition of Trypanosoma (Schizotrypanum) cruzi epimastigotes by delta 24(25)-sterol methyl transferase inhibitors and their combinations with ketoconazole.
    Urbina JA; Vivas J; Visbal G; Contreras LM
    Mol Biochem Parasitol; 1995 Jul; 73(1-2):199-210. PubMed ID: 8577328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of transition-state analogues of sterol 24-methyl transferase as potential anti-parasitics.
    Lorente SO; Jimenez CJ; Gros L; Yardley V; de Luca-Fradley K; Croft SL; A Urbina J; Ruiz-Perez LM; Pacanowska DG; Gilbert IH
    Bioorg Med Chem; 2005 Sep; 13(18):5435-53. PubMed ID: 16046134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous Sterol Synthesis Is Dispensable for
    Dumoulin PC; Vollrath J; Won MM; Wang JX; Burleigh BA
    Front Microbiol; 2022; 13():937910. PubMed ID: 35783434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.
    Xu W; Hsu FF; Baykal E; Huang J; Zhang K
    PLoS Pathog; 2014 Oct; 10(10):e1004427. PubMed ID: 25340392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs.
    de Souza W; Rodrigues JC
    Interdiscip Perspect Infect Dis; 2009; 2009():642502. PubMed ID: 19680554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CYP51 as drug targets for fungi and protozoan parasites: past, present and future.
    Lepesheva GI; Friggeri L; Waterman MR
    Parasitology; 2018 Dec; 145(14):1820-1836. PubMed ID: 29642960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azasterols as inhibitors of sterol 24-methyltransferase in Leishmania species and Trypanosoma cruzi.
    Magaraci F; Jimenez CJ; Rodrigues C; Rodrigues JC; Braga MV; Yardley V; de Luca-Fradley K; Croft SL; de Souza W; Ruiz-Perez LM; Urbina J; Gonzalez Pacanowska D; Gilbert IH
    J Med Chem; 2003 Oct; 46(22):4714-27. PubMed ID: 14561091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana.
    Ginger ML; Chance ML; Goad LJ
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):397-405. PubMed ID: 10455027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.
    Pérez-Moreno G; Sealey-Cardona M; Rodrigues-Poveda C; Gelb MH; Ruiz-Pérez LM; Castillo-Acosta V; Urbina JA; González-Pacanowska D
    Int J Parasitol; 2012 Oct; 42(11):975-89. PubMed ID: 22964455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome profiling of sterol synthesis shows convergent evolution in parasites and guides chemotherapeutic attack.
    Fügi MA; Gunasekera K; Ochsenreiter T; Guan X; Wenk MR; Mäser P
    J Lipid Res; 2014 May; 55(5):929-38. PubMed ID: 24627128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of fatty acid and sterol metabolism in miltefosine-resistant Leishmania donovani promastigotes and consequences for drug-membrane interactions.
    Rakotomanga M; Saint-Pierre-Chazalet M; Loiseau PM
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2677-86. PubMed ID: 15980336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of sterol biosynthesis and validation of 14α-demethylase as a drug target in Acanthamoeba.
    Thomson S; Rice CA; Zhang T; Edrada-Ebel R; Henriquez FL; Roberts CW
    Sci Rep; 2017 Aug; 7(1):8247. PubMed ID: 28811501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cholesterol-related sterols during Eimeria bovis macromeront formation and impact of selected oxysterols on parasite development.
    Taubert A; Silva LMR; Velásquez ZD; Larrazabal C; Lütjohann D; Hermosilla C
    Mol Biochem Parasitol; 2018 Jul; 223():1-12. PubMed ID: 29909067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana.
    Urbina JA; Concepcion JL; Rangel S; Visbal G; Lira R
    Mol Biochem Parasitol; 2002; 125(1-2):35-45. PubMed ID: 12467972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi.
    Raederstorff D; Rohmer M
    Eur J Biochem; 1987 Apr; 164(2):427-34. PubMed ID: 3569274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterol composition and biosynthesis in Trypanosoma cruzi amastigotes.
    Liendo A; Visbal G; Piras MM; Piras R; Urbina JA
    Mol Biochem Parasitol; 1999 Oct; 104(1):81-91. PubMed ID: 10589983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acid biosynthesis as a drug target in apicomplexan parasites.
    Goodman CD; McFadden GI
    Curr Drug Targets; 2007 Jan; 8(1):15-30. PubMed ID: 17266528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinuclidine derivatives as potential antiparasitics.
    Cammerer SB; Jimenez C; Jones S; Gros L; Lorente SO; Rodrigues C; Rodrigues JC; Caldera A; Ruiz Perez LM; da Souza W; Kaiser M; Brun R; Urbina JA; Gonzalez Pacanowska D; Gilbert IH
    Antimicrob Agents Chemother; 2007 Nov; 51(11):4049-61. PubMed ID: 17709461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.