These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12615328)

  • 1. Fluorescent chloramphenicol as a substitute for radioactive [14C]-chloramphenicol for CAT reporter assays in Plasmodium falciparum.
    Balu B; Adams JH
    Mol Biochem Parasitol; 2003 Feb; 126(2):285-6. PubMed ID: 12615328
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of a fluorescent chloramphenicol derivative as a substrate for CAT assays.
    Hruby DE; Brinkley JM; Kang HC; Haugland RP; Young SL; Melner MH
    Biotechniques; 1990 Feb; 8(2):170-1. PubMed ID: 2317370
    [No Abstract]   [Full Text] [Related]  

  • 3. A nonradioactive assay for transfected chloramphenicol acetyltransferase activity using fluorescent substrates.
    Young SL; Barbera L; Kaynard AH; Haugland RP; Kang HC; Brinkley M; Melner MH
    Anal Biochem; 1991 Sep; 197(2):401-7. PubMed ID: 1785695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved chloramphenicol acetyltransferase assay for Plasmodium falciparum transfection.
    Lucas SJ; Holder AA
    Mol Biochem Parasitol; 2004 Aug; 136(2):287-96. PubMed ID: 15478807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of fluorescent chloramphenicol derivative as a substrate for chloramphenicol acetyltransferase assays.
    Hruby DE; Wilson EM
    Methods Enzymol; 1992; 216():369-76. PubMed ID: 1479909
    [No Abstract]   [Full Text] [Related]  

  • 6. Quantitative nonradioactive CAT assays using fluorescent BODIPY 1-deoxychloramphenicol substrates.
    Lefevre CK; Singer VL; Kang HC; Haugland RP
    Biotechniques; 1995 Sep; 19(3):488-93. PubMed ID: 7495564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel substrate for assays of gene expression using chloramphenicol acetyltransferase.
    Murray IA; Lewendon A; Williams JA; Cullis PM; Lashford AG; Shaw WV
    Nucleic Acids Res; 1991 Dec; 19(23):6648. PubMed ID: 1754406
    [No Abstract]   [Full Text] [Related]  

  • 8. Detection of recombinant protein based on reporter enzyme activity: chloramphenicol acetyltransferase.
    Lee P; Hruby DE
    Methods Mol Biol; 1997; 63():31-40. PubMed ID: 9113638
    [No Abstract]   [Full Text] [Related]  

  • 9. Isotopic assays for reporter gene activity.
    Kingston RE; Sheen J; Moore D
    Curr Protoc Pharmacol; 2001 May; Chapter 6():Unit 6.4. PubMed ID: 21965075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate.
    Lewendon A; Murray IA; Kleanthous C; Cullis PM; Shaw WV
    Biochemistry; 1988 Sep; 27(19):7385-90. PubMed ID: 3061455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloramphenicol acetyltransferase assay.
    Smale ST
    Cold Spring Harb Protoc; 2010 May; 2010(5):pdb.prot5422. PubMed ID: 20439409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of CAT activity by incubation of CAT-expressing cells in medium containing chloramphenicol.
    Alter DC; Subramanian KN
    Biotechniques; 1988 Jun; 6(6):526-30. PubMed ID: 3273185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusions to chloramphenicol acetyltransferase as a reporter.
    Bullock C; Gorman C
    Methods Enzymol; 2000; 326():202-21. PubMed ID: 11036644
    [No Abstract]   [Full Text] [Related]  

  • 14. Replacement of catalytic histidine-195 of chloramphenicol acetyltransferase: evidence for a general base role for glutamate.
    Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1994 Feb; 33(7):1944-50. PubMed ID: 7906544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotopic assays for reporter gene activity.
    Kingston RE; Sheen J; Moore D
    Curr Protoc Mol Biol; 2001 May; Chapter 9():Unit9.7A. PubMed ID: 18265285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable transgene expression in Plasmodium falciparum.
    Crabb BS; Triglia T; Waterkeyn JG; Cowman AF
    Mol Biochem Parasitol; 1997 Dec; 90(1):131-44. PubMed ID: 9497038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the binding of 1,3-diacetylchloramphenicol to chloramphenicol acetyltransferase by isotope-edited 1H NMR and site-directed mutagenesis.
    Derrick JP; Lian LY; Roberts GC; Shaw WV
    Biochemistry; 1992 Sep; 31(35):8191-5. PubMed ID: 1525158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of a functional variant of chloramphenicol acetyltransferase in Haemophilus influenzae.
    Smith MD; Kelsey MC
    J Med Microbiol; 1989 Aug; 29(4):263-8. PubMed ID: 2668528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfection of Plasmodium falciparum within human red blood cells.
    Wu Y; Sifri CD; Lei HH; Su XZ; Wellems TE
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):973-7. PubMed ID: 7862676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of scFv phages specific for chloramphenicol acetyl transferase (CAT), as alternatives for antibodies in CAT detection assays.
    Van Dorst B; Mehta J; Rouah-Martin E; Backeljau J; De Coen W; Eeckhout D; De Jaeger G; Blust R; Robbens J
    J Appl Toxicol; 2012 Oct; 32(10):783-9. PubMed ID: 21500234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.