These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 12615355)

  • 1. Passive penetration of nitrate through the plasma membrane of Paracoccus denitrificans and its potentiation by the lipophilic tetraphenylphosphonium cation.
    Kucera I
    Biochim Biophys Acta; 2003 Mar; 1557(1-3):119-24. PubMed ID: 12615355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition by phenylglyoxal of nitrate transport in Paracoccus denitrificans: a comparison with the effect of a protonophorous uncoupler.
    Kucera I
    Arch Biochem Biophys; 2003 Jan; 409(2):327-34. PubMed ID: 12504899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificans.
    Alefounder PR; Ferguson SJ
    Biochem J; 1980 Oct; 192(1):231-40. PubMed ID: 7197918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic and anaerobic bacterial respiration monitored by electrodes.
    John P
    J Gen Microbiol; 1977 Jan; 98(1):231-8. PubMed ID: 319200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interference of chlorate and chlorite with nitrate reduction in resting cells of Paracoccus denitrificans.
    Kučera I
    Microbiology (Reading); 2006 Dec; 152(Pt 12):3529-3534. PubMed ID: 17159204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate binding site for nitrate reductase of Escherichia coli is on the inner aspect of the membrane.
    Kristjansson JK; Hollocher TC
    J Bacteriol; 1979 Mar; 137(3):1227-33. PubMed ID: 374343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistant Paracoccus denitrificans.
    Calder K; Burke KA; Lascelles J
    Arch Microbiol; 1980 Jun; 126(2):149-53. PubMed ID: 7192081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy coupling to nitrate uptake into the denitrifying cells of Paracoccus denitrificans.
    Kucera I
    Biochim Biophys Acta; 2005 Sep; 1709(2):113-8. PubMed ID: 16112075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen increases the steady-state level of nitrate in denitrifying cells of Paracoccus denitrificans.
    Kucera I; Kaplan P; Zeman A
    FEMS Microbiol Lett; 1996 Dec; 145(2):163-6. PubMed ID: 8961552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation with an ion-selective electrode of the membrane potential in cells of Paracoccus denitrificans from the uptake of the butyltriphenylphosphonium cation during aerobic and anaerobic respiration.
    McCarthy JE; Ferguson SJ; Kell DB
    Biochem J; 1981 Apr; 196(1):311-21. PubMed ID: 7306073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TPP+ inhibits Na+-stimulated Ca2+ efflux from brain mitochondria.
    Karadjov JS; Kudzina LYu ; Zinchenko VP
    Cell Calcium; 1986 Apr; 7(2):115-9. PubMed ID: 3708677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The function of cytoplasmic membrane of Paracoccus denitrificans in controlling the rate of reduction of terminal acceptors.
    Kucera I; Laucík J; Dadák V
    Eur J Biochem; 1983 Oct; 136(1):135-40. PubMed ID: 6684550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of inhibition of FaDu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride.
    Rideout D; Bustamante A; Patel J
    Int J Cancer; 1994 Apr; 57(2):247-53. PubMed ID: 8157363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism by which cyclopiazonic acid potentiates accumulation of tetraphenylphosphonium in cultured renal epithelial cells.
    Riley RT; Showker JL; Cole RJ; Dorner J
    J Biochem Toxicol; 1986 Dec; 1(4):13-29. PubMed ID: 3271882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased accumulation of the lipophilic cation tetraphenylphosphonium+ by cyclopiazonic acid-treated renal epithelial cells.
    Riley RT; Norred WP; Dorner JW; Cole RJ
    J Toxicol Environ Health; 1985; 15(6):779-88. PubMed ID: 4057282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of plasma membrane potential in isolated rat hepatocytes using the lipophilic cation, tetraphenylphosphonium: correction of probe intracellular binding and mitochondrial accumulation.
    Saito S; Murakami Y; Miyauchi S; Kamo N
    Biochim Biophys Acta; 1992 Nov; 1111(2):221-30. PubMed ID: 1329961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a lipophilic cation to monitor electrical membrane potential in the intact rat lens.
    Cheng Q; Lichtstein D; Russell P; Zigler JS
    Invest Ophthalmol Vis Sci; 2000 Feb; 41(2):482-7. PubMed ID: 10670479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of tetraphenylphosphonium and dodecyltriphenylphosphonium with lipid membranes and mitochondria.
    Trendeleva TA; Rogov AG; Cherepanov DA; Sukhanova EI; Il'yasova TM; Severina II; Zvyagilskaya RA
    Biochemistry (Mosc); 2012 Sep; 77(9):1021-8. PubMed ID: 23157262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of nitrate from water by cells of Paracoccus denitrificans in a membrane flow reactor.
    Kucera I; Cerná I
    Folia Microbiol (Praha); 1991; 36(1):81-5. PubMed ID: 1668747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.