BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12615403)

  • 1. Adsorption of amphipathic dendrons on polystyrene nanoparticles.
    Sakthivel T; Florence AT
    Int J Pharm; 2003 Mar; 254(1):23-6. PubMed ID: 12615403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers.
    Stolnik S; Daudali B; Arien A; Whetstone J; Heald CR; Garnett MC; Davis SS; Illum L
    Biochim Biophys Acta; 2001 Oct; 1514(2):261-79. PubMed ID: 11557026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of cationic dendrons with albumin and their diffusion through cellulose membranes.
    Purohit G; Sakthivel T; Florence AT
    Int J Pharm; 2003 Mar; 254(1):37-41. PubMed ID: 12615406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of different amphiphilic molecules onto polystyrene latices.
    Jódar-Reyes AB; Ortega-Vinuesa JL; Martín-Rodríguez A
    J Colloid Interface Sci; 2005 Feb; 282(2):439-47. PubMed ID: 15589551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of polystyrene nanoparticles using dextrans and dextran-POE copolymers: polymer adsorption and colloidal characterization.
    de Sousa Delgado A; Leonard M; Dellacherie E
    J Biomater Sci Polym Ed; 2000; 11(12):1395-410. PubMed ID: 11261880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive adsorption of fibrinogen and albumin and blood platelet adhesion on surfaces modified with nanoparticles and/or PEO.
    Nonckreman CJ; Fleith S; Rouxhet PG; Dupont-Gillain CC
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):139-49. PubMed ID: 20171850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration dependent structural ordering of poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption.
    Al-Hanbali O; Rutt KJ; Sarker DK; Hunter AC; Moghimi SM
    J Nanosci Nanotechnol; 2006; 6(9-10):3126-33. PubMed ID: 17048527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticles of latexes from commercial polystyrene.
    Xu XJ; Chow PY; Gan LM
    J Nanosci Nanotechnol; 2002 Feb; 2(1):61-5. PubMed ID: 12908322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of temperature on the surface nature of an adsorbed layer of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) block copolymers.
    Carthew DL; Buckton G; Parsons GE; Poole S
    Pharm Res; 1996 Nov; 13(11):1730-3. PubMed ID: 8956343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of physiological media on the stability of surface-adsorbed DNA-dendron-gold nanoparticles.
    Singh B; Hussain N; Sakthivel T; Florence AT
    J Pharm Pharmacol; 2003 Dec; 55(12):1635-40. PubMed ID: 14738589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats.
    Tan JS; Butterfield DE; Voycheck CL; Caldwell KD; Li JT
    Biomaterials; 1993 Sep; 14(11):823-33. PubMed ID: 8218736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial activity of phosphonated-PEG functionalized cerium oxide nanoparticles.
    Qi L; Fresnais J; Muller P; Theodoly O; Berret JF; Chapel JP
    Langmuir; 2012 Aug; 28(31):11448-56. PubMed ID: 22794100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylene glycol-grafted polystyrene particles.
    Meng F; Engbers GH; Feijen J
    J Biomed Mater Res A; 2004 Jul; 70(1):49-58. PubMed ID: 15174108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small Surfactant Concentration Differences Influence Adsorption of Human Serum Albumin on Polystyrene Nanoparticles.
    Winzen S; Schwabacher JC; Müller J; Landfester K; Mohr K
    Biomacromolecules; 2016 Nov; 17(11):3845-3851. PubMed ID: 27783498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and covalent binding of fibrinogen as a method for probing the chemical composition of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microsphere surfaces.
    Gosecka M; Chehimi MM; Basinska T; Slomkowski S; Makowski T
    Colloids Surf B Biointerfaces; 2017 Dec; 160():438-445. PubMed ID: 28985605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sedimentation volume, redispersibility and appearance of a polystyrene latex suspension in the presence of nonionic surface active agents.
    Law SL
    Proc Natl Sci Counc Repub China B; 1986 Jul; 10(3):203-6. PubMed ID: 3774916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SANS study of the interactions among DNA, a cationic surfactant, and polystyrene latex particles.
    Cárdenas M; Dreiss CA; Nylander T; Chan CP; Cosgrove T; Lindman B
    Langmuir; 2005 Apr; 21(8):3578-83. PubMed ID: 15807604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers.
    Moghimi SM
    Biochim Biophys Acta; 2002 Jun; 1590(1-3):131-9. PubMed ID: 12063176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional groups on polystyrene model nanoparticles: influence on protein adsorption.
    Gessner A; Lieske A; Paulke BR; Müller RH
    J Biomed Mater Res A; 2003 Jun; 65(3):319-26. PubMed ID: 12746878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility.
    Beck-Broichsitter M; Bohr A; Ruge CA
    Mol Pharm; 2017 Oct; 14(10):3464-3472. PubMed ID: 28813610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.