These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12615478)

  • 1. Selective bone cell adhesion on formulations containing carbon nanofibers.
    Price RL; Waid MC; Haberstroh KM; Webster TJ
    Biomaterials; 2003 May; 24(11):1877-87. PubMed ID: 12615478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts.
    Price RL; Ellison K; Haberstroh KM; Webster TJ
    J Biomed Mater Res A; 2004 Jul; 70(1):129-38. PubMed ID: 15174117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns.
    Khang D; Sato M; Price RL; Ribbe AE; Webster TJ
    Int J Nanomedicine; 2006; 1(1):65-72. PubMed ID: 17722263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.
    Webster TJ; Ejiofor JU
    Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane.
    Bajaj P; Khang D; Webster TJ
    Int J Nanomedicine; 2006; 1(3):361-5. PubMed ID: 17717976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased osteoblast functions on theta + delta nanofiber alumina.
    Webster TJ; Hellenmeyer EL; Price RL
    Biomaterials; 2005 Mar; 26(9):953-60. PubMed ID: 15369683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Ca/P molar ratios on regulating biological functions of hybridized carbon nanofibers containing bioactive glass nanoparticles.
    Cheng D; Liu D; Tang T; Zhang X; Jia X; Cai Q; Yang X
    Biomed Mater; 2017 Apr; 12(2):025019. PubMed ID: 28388594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased functions of astrocytes on carbon nanofiber materials.
    McKenzie JL; Waid MC; Shi R; Webster TJ
    Biomaterials; 2004; 25(7-8):1309-17. PubMed ID: 14643605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced functions of osteoblasts on nanometer diameter carbon fibers.
    Elias KL; Price RL; Webster TJ
    Biomaterials; 2002 Aug; 23(15):3279-87. PubMed ID: 12102199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro osteoblastic response to 30 vol% hydroxyapatite-polyethylene composite.
    Zhang Y; Tanner KE; Gurav N; Di Silvio L
    J Biomed Mater Res A; 2007 May; 81(2):409-17. PubMed ID: 17117474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving interfacial adhesion with epoxy matrix using hybridized carbon nanofibers containing calcium phosphate nanoparticles for bone repairing.
    Gao X; Lan J; Jia X; Cai Q; Yang X
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():174-9. PubMed ID: 26838838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrocyte-biocompatibility of DegraPol-foam: in vitro evaluations.
    Saad B; Moro M; Tun-Kyi A; Welti M; Schmutz P; Uhlschmid GK; Neuenschwander P; Suter UW
    J Biomater Sci Polym Ed; 1999; 10(11):1107-19. PubMed ID: 10606029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion.
    Kay S; Thapa A; Haberstroh KM; Webster TJ
    Tissue Eng; 2002 Oct; 8(5):753-61. PubMed ID: 12459054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.
    Liu H; Yazici H; Ergun C; Webster TJ; Bermek H
    Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions.
    Tsang M; Chun YW; Im YM; Khang D; Webster TJ
    Tissue Eng Part A; 2011 Jul; 17(13-14):1879-89. PubMed ID: 21417694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterials with hierarchically defined micro- and nanoscale structure.
    Tan J; Saltzman WM
    Biomaterials; 2004 Aug; 25(17):3593-601. PubMed ID: 15020133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greater osteoblast and mesenchymal stem cell adhesion and proliferation on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes.
    Wang M; Castro NJ; Li J; Keidar M; Zhang LG
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7692-702. PubMed ID: 23421129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate.
    Mavis B; Demirtaş TT; Gümüşderelioğlu M; Gündüz G; Colak U
    Acta Biomater; 2009 Oct; 5(8):3098-111. PubMed ID: 19426840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation.
    Khang D; Park GE; Webster TJ
    J Biomed Mater Res A; 2008 Jul; 86(1):253-60. PubMed ID: 18186050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina.
    Price RL; Haberstroh KM; Webster TJ
    Med Biol Eng Comput; 2003 May; 41(3):372-5. PubMed ID: 12803305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.