These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 12615484)

  • 1. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique.
    Hou Q; Grijpma DW; Feijen J
    Biomaterials; 2003 May; 24(11):1937-47. PubMed ID: 12615484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process.
    Hou Q; Grijpma DW; Feijen J
    J Biomed Mater Res B Appl Biomater; 2003 Nov; 67(2):732-40. PubMed ID: 14598400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds.
    Ghosh S; Viana JC; Reis RL; Mano JF
    J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds.
    Sempertegui ND; Narkhede AA; Thomas V; Rao SS
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering.
    Wei G; Ma PX
    Biomaterials; 2004 Aug; 25(19):4749-57. PubMed ID: 15120521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.
    Flaibani M; Elvassore N
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration.
    Heijkants RG; van Calck RV; De Groot JH; Pennings AJ; Schouten AJ; van Tienen TG; Ramrattan N; Buma P; Veth RP
    J Mater Sci Mater Med; 2004 Apr; 15(4):423-7. PubMed ID: 15332611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
    Chen VJ; Ma PX
    Biomaterials; 2004 May; 25(11):2065-73. PubMed ID: 14741621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creep-resistant porous structures based on stereo-complex forming triblock copolymers of 1,3-trimethylene carbonate and lactides.
    Zhang Z; Grijpma DW; Feijen J
    J Mater Sci Mater Med; 2004 Apr; 15(4):381-5. PubMed ID: 15332603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous poly(ε-caprolactone) scaffolds for load-bearing tissue regeneration: solventless fabrication and characterization.
    Allaf RM; Rivero IV; Abidi N; Ivanov IN
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1050-60. PubMed ID: 23559444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering.
    Pêgo AP; Siebum B; Van Luyn MJ; Gallego y Van Seijen XJ; Poot AA; Grijpma DW; Feijen J
    Tissue Eng; 2003 Oct; 9(5):981-94. PubMed ID: 14633382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds].
    Quan D; Liao K; Luo B; Lu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique.
    Lebourg M; Sabater Serra R; Más Estellés J; Hernández Sánchez F; Gómez Ribelles JL; Suay Antón J
    J Mater Sci Mater Med; 2008 May; 19(5):2047-53. PubMed ID: 17968506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties.
    Kothapalli CR; Shaw MT; Wei M
    Acta Biomater; 2005 Nov; 1(6):653-62. PubMed ID: 16701846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical characterization of polycaprolactone scaffolds.
    Más Estellés J; Vidaurre A; Meseguer Dueñas JM; Castilla Cortázar I
    J Mater Sci Mater Med; 2008 Jan; 19(1):189-95. PubMed ID: 17597379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.