These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
903 related articles for article (PubMed ID: 12615976)
1. Telomere-based proliferative lifespan barriers in Werner-syndrome fibroblasts involve both p53-dependent and p53-independent mechanisms. Davis T; Singhrao SK; Wyllie FS; Haughton MF; Smith PJ; Wiltshire M; Wynford-Thomas D; Jones CJ; Faragher RG; Kipling D J Cell Sci; 2003 Apr; 116(Pt 7):1349-57. PubMed ID: 12615976 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the signaling pathways involved in the proliferative life span barriers in werner syndrome fibroblasts. Davis T; Faragher RG; Jones CJ; Kipling D Ann N Y Acad Sci; 2004 Jun; 1019():274-7. PubMed ID: 15247028 [TBL] [Abstract][Full Text] [Related]
3. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Itahana K; Zou Y; Itahana Y; Martinez JL; Beausejour C; Jacobs JJ; Van Lohuizen M; Band V; Campisi J; Dimri GP Mol Cell Biol; 2003 Jan; 23(1):389-401. PubMed ID: 12482990 [TBL] [Abstract][Full Text] [Related]
4. A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Evans RJ; Wyllie FS; Wynford-Thomas D; Kipling D; Jones CJ Cancer Res; 2003 Aug; 63(16):4854-61. PubMed ID: 12941806 [TBL] [Abstract][Full Text] [Related]
5. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Herbig U; Jobling WA; Chen BP; Chen DJ; Sedivy JM Mol Cell; 2004 May; 14(4):501-13. PubMed ID: 15149599 [TBL] [Abstract][Full Text] [Related]
6. Expression profiles of p53-, p16(INK4a)-, and telomere-regulating genes in replicative senescent primary human, mouse, and chicken fibroblast cells. Kim H; You S; Farris J; Kong BW; Christman SA; Foster LK; Foster DN Exp Cell Res; 2002 Jan; 272(2):199-208. PubMed ID: 11777345 [TBL] [Abstract][Full Text] [Related]
7. Prevention of accelerated cell aging in the Werner syndrome. Davis T; Haughton MF; Jones CJ; Kipling D Ann N Y Acad Sci; 2006 May; 1067():243-7. PubMed ID: 16803993 [TBL] [Abstract][Full Text] [Related]
8. Sequential extension of proliferative lifespan in human fibroblasts induced by over-expression of CDK4 or 6 and loss of p53 function. Morris M; Hepburn P; Wynford-Thomas D Oncogene; 2002 Jun; 21(27):4277-88. PubMed ID: 12082615 [TBL] [Abstract][Full Text] [Related]
9. A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Rheinwald JG; Hahn WC; Ramsey MR; Wu JY; Guo Z; Tsao H; De Luca M; Catricalà C; O'Toole KM Mol Cell Biol; 2002 Jul; 22(14):5157-72. PubMed ID: 12077343 [TBL] [Abstract][Full Text] [Related]
11. Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Munro J; Barr NI; Ireland H; Morrison V; Parkinson EK Exp Cell Res; 2004 May; 295(2):525-38. PubMed ID: 15093749 [TBL] [Abstract][Full Text] [Related]
12. Association of p16(INK4a) and pRb inactivation with immortalization of human cells. Tsutsui T; Kumakura S; Yamamoto A; Kanai H; Tamura Y; Kato T; Anpo M; Tahara H; Barrett JC Carcinogenesis; 2002 Dec; 23(12):2111-7. PubMed ID: 12507935 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization. Taylor LM; James A; Schuller CE; Brce J; Lock RB; Mackenzie KL J Biol Chem; 2004 Oct; 279(42):43634-45. PubMed ID: 15308640 [TBL] [Abstract][Full Text] [Related]
15. Two mechanisms underlying the loss of p16(Ink4a) function are associated with distinct tumorigenic consequences for WS MEFs escaping from senescence. Wu X; Jia S; Zhang X; Si X; Tang W; Luo Y Mech Ageing Dev; 2012 Aug; 133(8):549-55. PubMed ID: 22813853 [TBL] [Abstract][Full Text] [Related]
16. Long-term growth arrest of PUVA-treated fibroblasts in G2/M in the absence of p16(INK4a) p21(CIP1) or p53. Ma W; Hommel C; Brenneisen P; Peters T; Smit N; Sedivy J; Scharffetter-Kochanek K; Wlaschek M Exp Dermatol; 2003 Oct; 12(5):629-37. PubMed ID: 14705804 [TBL] [Abstract][Full Text] [Related]
17. Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Ramirez RD; Herbert BS; Vaughan MB; Zou Y; Gandia K; Morales CP; Wright WE; Shay JW Oncogene; 2003 Jan; 22(3):433-44. PubMed ID: 12545164 [TBL] [Abstract][Full Text] [Related]
18. Control of replicative life span in human cells: barriers to clonal expansion intermediate between M1 senescence and M2 crisis. Bond JA; Haughton MF; Rowson JM; Smith PJ; Gire V; Wynford-Thomas D; Wyllie FS Mol Cell Biol; 1999 Apr; 19(4):3103-14. PubMed ID: 10082577 [TBL] [Abstract][Full Text] [Related]
19. Reversal of human cellular senescence: roles of the p53 and p16 pathways. Beauséjour CM; Krtolica A; Galimi F; Narita M; Lowe SW; Yaswen P; Campisi J EMBO J; 2003 Aug; 22(16):4212-22. PubMed ID: 12912919 [TBL] [Abstract][Full Text] [Related]
20. Replicative senescence in sheep fibroblasts is a p53 dependent process. Davis T; Skinner JW; Faragher RG; Jones CJ; Kipling D Exp Gerontol; 2005; 40(1-2):17-26. PubMed ID: 15664728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]