These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12615983)

  • 1. Vasoactive mediators and renal haemodynamics in exertional heat stroke complicated by acute renal failure.
    Lin YF; Wang JY; Chou TC; Lin SH
    QJM; 2003 Mar; 96(3):193-201. PubMed ID: 12615983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolism in exertional heat stroke with acute renal failure.
    Yu FC; Lu KC; Lin SH; Chen GS; Chu P; Gao GW; Lin YF
    Nephrol Dial Transplant; 1997 Oct; 12(10):2087-92. PubMed ID: 9351070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in thyroid hormone metabolism in exertional heat stroke with or without acute renal failure.
    Chen WL; Huang WS; Lin YF; Shieh SD
    J Clin Endocrinol Metab; 1996 Feb; 81(2):625-9. PubMed ID: 8636279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A prospective study of calcium metabolism in exertional heat stroke with rhabdomyolysis and acute renal failure.
    Shieh SD; Lin YF; Lin SH; Lu KC
    Nephron; 1995; 71(4):428-32. PubMed ID: 8587623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of creatine phosphokinase in predicting acute renal failure in hypocalcemic exertional heat stroke.
    Shieh SD; Lin YF; Lu KC; Li BL; Chu P; Shyh TP; Diang LK
    Am J Nephrol; 1992; 12(4):252-8. PubMed ID: 1481873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of neutrophil phagocytosis and lymphocyte adhesion molecules in exertional heat stroke.
    Lu KC; Lin SH; Chu P; Tsai WS; Lin YF
    Am J Med Sci; 2004 Feb; 327(2):68-72. PubMed ID: 14770021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute interactions between endothelin and nitric oxide in the control of renal haemodynamics.
    Baylis C
    Clin Exp Pharmacol Physiol; 1999 Mar; 26(3):253-7. PubMed ID: 10081623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-Arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats.
    Schneider R; Raff U; Vornberger N; Schmidt M; Freund R; Reber M; Schramm L; Gambaryan S; Wanner C; Schmidt HH; Galle J
    Kidney Int; 2003 Jul; 64(1):216-25. PubMed ID: 12787412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-arginine reduces tubular cell injury in acute post-ischaemic renal failure.
    Jerkić M; Varagić J; Jovović D; Radujković-Kuburović G; Nastić-Mirić D; Adanja-Grujić G; Marković-Lipkovski J; Dimitrijević J; Miloradović Z; Vojvodić SB
    Nephrol Dial Transplant; 1999 Jun; 14(6):1398-407. PubMed ID: 10382999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantation.
    Schramm L; La M; Heidbreder E; Hecker M; Beckman JS; Lopau K; Zimmermann J; Rendl J; Reiners C; Winderl S; Wanner C; Schmidt HH
    Kidney Int; 2002 Apr; 61(4):1423-32. PubMed ID: 11918749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats.
    Conger J; Robinette J; Villar A; Raij L; Shultz P
    J Clin Invest; 1995 Jul; 96(1):631-8. PubMed ID: 7542287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of 1400W and/or nitroglycerin on renal oxygenation and kidney function during endotoxaemia in anaesthetized rats.
    Johannes T; Mik EG; Klingel K; Goedhart PT; Zanke C; Nohé B; Dieterich HJ; Unertl KE; Ince C
    Clin Exp Pharmacol Physiol; 2009 Sep; 36(9):870-9. PubMed ID: 19413586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintenance of renal vascular reactivity contributes to acute renal failure during endotoxemic shock.
    Boffa JJ; Arendshorst WJ
    J Am Soc Nephrol; 2005 Jan; 16(1):117-24. PubMed ID: 15563566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelin-1 in acute renal failure.
    Peco-Antić A; Nastić-Mirić D; Popović-Rolović M; Adanja G; Kostić M; Paripović V
    Ren Fail; 1996 Jul; 18(4):553-6. PubMed ID: 8875679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amelioration of post-ischaemic renal injury by contralateral uninephrectomy: a role of endothelin-1.
    Kato A; Hishida A
    Nephrol Dial Transplant; 2001 Aug; 16(8):1570-6. PubMed ID: 11477157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cyclooxygenase-2 in the control of renal haemodynamics and excretory function.
    López R; Roig F; Llinás MT; Salazar FJ
    Acta Physiol Scand; 2003 Apr; 177(4):429-35. PubMed ID: 12648160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention of systemic and regional haemodynamic alterations, hypercreatininemia, hyperuremia and hyperphosphatemia by losartan in hypertension with acute renal failure.
    Ivanov M; Mihailovic-Stanojevic N; Grujic Milanovic J; Jovovic D; Miloradovic Z
    Acta Physiol Hung; 2011 Mar; 98(1):1-7. PubMed ID: 21388925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal hemodynamics in experimental acute renal failure.
    Hsu CH; Kurtz TW
    Nephron; 1981; 27(4-5):204-8. PubMed ID: 7022240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal sodium handling in experimental diabetes: role of NO.
    Komers R; Cooper ME
    Nephrol Dial Transplant; 1996 Nov; 11(11):2170-7. PubMed ID: 8941575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalization of vasoactive changes in preeclampsia precedes clinical recovery.
    Makkonen N; Heinonen S; Hongisto T; Penttilä I; Kirkinen P
    Hypertens Pregnancy; 2002; 21(1):51-64. PubMed ID: 12044343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.