These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12617223)

  • 1. Analysis of electro-optic crystal-based Fabry-Perot etalons for high-speed spatial light modulators.
    Takizawa K
    Appl Opt; 2003 Feb; 42(6):1052-67. PubMed ID: 12617223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches.
    Liu X; Tan P; Ma X; Wang D; Jin X; Liu Y; Xu B; Qiao L; Qiu C; Wang B; Zhao W; Wei C; Song K; Guo H; Li X; Li S; Wei X; Chen LQ; Xu Z; Li F; Tian H; Zhang S
    Science; 2022 Apr; 376(6591):371-377. PubMed ID: 35446634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-optic Fabry-Perot pixels for phase-dominant spatial light modulators.
    Soref RA; Bennett BR
    Appl Opt; 1992 Feb; 31(5):675-80. PubMed ID: 20720665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal growth of KTiOPO
    Zhou H; He X; Wu W; Tong J; Wang J; Zuo Y; Wu Y; Zhang C; Hu Z
    Light Sci Appl; 2023 Jan; 12(1):23. PubMed ID: 36635271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-optic polymer spatial light modulator based on a Fabry-Perot interferometer configuration.
    Greenlee C; Luo J; Leedy K; Bayraktaroglu B; Norwood RA; Fallahi M; Jen AK; Peyghambarian N
    Opt Express; 2011 Jun; 19(13):12750-8. PubMed ID: 21716517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity enhancement of electro-optic polymer probing system using photo-isomerization and Fabry-Pérot effects.
    Kuo WK; Su TM; Ke ZY; Lin HC; Wu CJ
    Rev Sci Instrum; 2013 Jul; 84(7):073110. PubMed ID: 23902047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronized Fabry-Perot cavity used for enhanced sensitivity electro-optic measurements of electric fields in the microwave range.
    Amin A; Antoine P; Cornet A; Mallat K; Urbain X
    Appl Opt; 2013 Aug; 52(24):5894-902. PubMed ID: 24084989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-Optical Modulation in High
    Kanyang R; Fang C; Yang Q; Shao Y; Han G; Liu Y; Hao Y
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffraction light modulator based on transverse electro-optic effect in short-pitch ferroelectric liquid crystals.
    Parfenov A
    Appl Opt; 1999 Sep; 38(26):5656-61. PubMed ID: 18324077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithm for the propagation of electromagnetic fields through etalons and crystals.
    Zhang S; Hellmann C; Wyrowski F
    Appl Opt; 2017 May; 56(15):4566-4576. PubMed ID: 29047889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric-field-induced optical path length change in LiNbO3:MgO crystals: spatial anisotropy analysis.
    Andrushchak AS; Yurkevych OV; Strychalyuk BM; Klymash MM; Rusek A; Kityk AV
    Appl Opt; 2013 Jun; 52(16):3757-63. PubMed ID: 23736331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.
    Kuo WK; Wu PY; Lee CC
    Rev Sci Instrum; 2010 May; 81(5):053107. PubMed ID: 20515124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferroelectric liquid-crystal waveguide modulation based on a switchable uniaxial-uniaxial interface.
    Walker DB; Glytsis EN; Gaylord TK
    Appl Opt; 1996 Jun; 35(16):3016-30. PubMed ID: 21085454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Note: Electro-optic coefficients of Li-deficient MgO-doped LiNbO
    Du WY; Zhang ZB; Ren S; Wong WH; Yu DY; Pun EY; Zhang DL
    Rev Sci Instrum; 2016 Sep; 87(9):096105. PubMed ID: 27782605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape.
    Shi Y; Zhang C; Zhang H; Bechtel JH; Dalton LR; Robinson BH; Steier WH
    Science; 2000 Apr; 288(5463):119-22. PubMed ID: 10753112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticrossing of polarization modes in liquid-crystal étalons.
    Patel JS; Silberberg Y
    Opt Lett; 1991 Jul; 16(13):1049-51. PubMed ID: 19776872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant electro-optic effect in nanodisordered KTN crystals.
    Chang YC; Wang C; Yin S; Hoffman RC; Mott AG
    Opt Lett; 2013 Nov; 38(22):4574-7. PubMed ID: 24322077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically-isotropic nanoencapsulated liquid crystal displays based on Kerr effect.
    Kang SG; Kim JH
    Opt Express; 2013 Jul; 21(13):15719-27. PubMed ID: 23842358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the pockels effect in photonic crystal modulators through slow light.
    Girouard P; Liu Z; Chen P; Jeong YK; Tu Y; Ho ST; Wessels BW
    Opt Lett; 2016 Dec; 41(23):5531-5534. PubMed ID: 27906231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large Electro-Optic Kerr Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.
    Schlick MC; Kapernaum N; Neidhardt MM; Wöhrle T; Stöckl Y; Laschat S; Giesselmann F
    Chemphyschem; 2018 Sep; 19(18):2305-2312. PubMed ID: 29873442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.