These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 12617522)
1. Field stimulation of cardiac fibers with random spatial structure. Krassowska W IEEE Trans Biomed Eng; 2003 Jan; 50(1):33-40. PubMed ID: 12617522 [TBL] [Abstract][Full Text] [Related]
2. Combining stimulus direction and waveform for optimization of threshold stimulation of isolated ventricular myocytes. Bassani RA; Lima KA; Gomes PA; Oliveira PX; Bassani JW Physiol Meas; 2006 Sep; 27(9):851-63. PubMed ID: 16868351 [TBL] [Abstract][Full Text] [Related]
3. How the spatial frequency of polarization influences the induction of reentry in cardiac tissue. Beaudoin DL; Roth BJ J Cardiovasc Electrophysiol; 2005 Jul; 16(7):748-52. PubMed ID: 16050833 [TBL] [Abstract][Full Text] [Related]
4. Discrete versus syncytial tissue behavior in a model of cardiac stimulation--II: Results of simulation. Trayanova N IEEE Trans Biomed Eng; 1996 Dec; 43(12):1141-50. PubMed ID: 9214833 [TBL] [Abstract][Full Text] [Related]
5. The effect of plunge electrodes during electrical stimulation of cardiac tissue. Langrill DM; Roth BJ IEEE Trans Biomed Eng; 2001 Oct; 48(10):1207-11. PubMed ID: 11585046 [TBL] [Abstract][Full Text] [Related]
6. Lethal effect of electric fields on isolated ventricular myocytes. de Oliveira PX; Bassani RA; Bassani JW IEEE Trans Biomed Eng; 2008 Nov; 55(11):2635-42. PubMed ID: 18990634 [TBL] [Abstract][Full Text] [Related]
7. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation. Trayanova NA; Roth BJ; Malden LJ IEEE Trans Biomed Eng; 1993 Sep; 40(9):899-908. PubMed ID: 8288281 [TBL] [Abstract][Full Text] [Related]
8. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model. Huang Q; Eason JC; Claydon FJ IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823 [TBL] [Abstract][Full Text] [Related]
9. Refractoriness of cardiac muscle as affected by intercalated disks: a model study implications for fibrillation and defibrillation. Haas HG; Solchenbach K Gen Physiol Biophys; 2004 Jun; 23(2):133-71. PubMed ID: 15696857 [TBL] [Abstract][Full Text] [Related]
10. Potential distribution in three-dimensional periodic myocardium--Part II: Application to extracellular stimulation. Krassowska W; Frazier DW; Pilkington TC; Ideker RE IEEE Trans Biomed Eng; 1990 Mar; 37(3):267-84. PubMed ID: 2329001 [TBL] [Abstract][Full Text] [Related]
11. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application. Raman V; Pollard AE; Fast VG Cardiovasc Res; 2007 Jan; 73(1):101-10. PubMed ID: 17134687 [TBL] [Abstract][Full Text] [Related]
12. Construction of a computer model to investigate sawtooth effects in the Purkinje system. Vigmond EJ; Clements C IEEE Trans Biomed Eng; 2007 Mar; 54(3):389-99. PubMed ID: 17355050 [TBL] [Abstract][Full Text] [Related]
13. A percutaneous catheter-based system for the measurement of potential gradients applicable to the study of transthoracic defibrillation. Rosborough JP; Deno DC; Walker RG; Niemann JT Pacing Clin Electrophysiol; 2007 Feb; 30(2):166-74. PubMed ID: 17338711 [TBL] [Abstract][Full Text] [Related]
14. Decomposition of field-induced transmembrane potential responses of single cardiac cells. Sharma V; Lu SN; Tung L IEEE Trans Biomed Eng; 2002 Sep; 49(9):1031-7. PubMed ID: 12214875 [TBL] [Abstract][Full Text] [Related]
15. Numerical study of the electrical conductivity and polarization in a suspension of spherical cells. Ramos A; Suzuki DO; Marques JL Bioelectrochemistry; 2006 May; 68(2):213-7. PubMed ID: 16256446 [TBL] [Abstract][Full Text] [Related]
16. Deep entry of defibrillating effects into homogeneous cardiac tissue. Otani NF IEEE Trans Biomed Eng; 2004 Mar; 51(3):401-7. PubMed ID: 15000371 [TBL] [Abstract][Full Text] [Related]
17. Virtual sources and sinks during extracellular field shocks in cardiac cell cultures: effects of source-sink interactions between adjacent tissue boundaries. Kondratyev AA; Didon JP; Hinnen-Oberer H; Lemay M; Kucera JP; Kleber AG Circ Arrhythm Electrophysiol; 2012 Apr; 5(2):391-9. PubMed ID: 22387879 [TBL] [Abstract][Full Text] [Related]
18. Effects of electrical shocks on Cai2+ and Vm in myocyte cultures. Fast VG; Cheek ER; Pollard AE; Ideker RE Circ Res; 2004 Jun; 94(12):1589-97. PubMed ID: 15155528 [TBL] [Abstract][Full Text] [Related]
19. Spatial relationships in electrostimulation: application to electromagnetic field standards. Reilly JP; Diamani AM IEEE Trans Biomed Eng; 2003 Jun; 50(6):783-5. PubMed ID: 12814245 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. Deans JK; Powell AD; Jefferys JG J Physiol; 2007 Sep; 583(Pt 2):555-65. PubMed ID: 17599962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]