These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 12617523)

  • 1. Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithm: wavelet analysis in microneurography.
    Diedrich A; Charoensuk W; Brychta RJ; Ertl AC; Shiavi R
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):41-50. PubMed ID: 12617523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and opportunities in processing muscle sympathetic nerve activity with wavelet denoising techniques: detecting single action potentials in multiunit sympathetic nerve recordings in humans.
    Zhang Q; Liu Y; Brown L; Shoemaker JK
    Auton Neurosci; 2007 Jul; 134(1-2):92-105. PubMed ID: 17412648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike detection in human muscle sympathetic nerve activity using a matched wavelet approach.
    Salmanpour A; Brown LJ; Shoemaker JK
    J Neurosci Methods; 2010 Nov; 193(2):343-55. PubMed ID: 20831884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike detection in human muscle sympathetic nerve activity using the kurtosis of stationary wavelet transform coefficients.
    Brychta RJ; Shiavi R; Robertson D; Diedrich A
    J Neurosci Methods; 2007 Mar; 160(2):359-67. PubMed ID: 17083982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and classification of raw action potential patterns in human Muscle Sympathetic Nerve Activity.
    Salmanpour A; Brown LJ; Shoemaker JK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2928-31. PubMed ID: 19163319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of two automated methods for quantifying human muscle sympathetic nerve activity.
    Rothman JL; Easty AC; Frecker RC; Floras JS
    Comput Biol Med; 1991; 21(4):221-35. PubMed ID: 1764931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike rate of multi-unit muscle sympathetic nerve fibers after catheter-based renal nerve ablation.
    Tank J; Heusser K; Brinkmann J; Schmidt BM; Menne J; Bauersachs J; Haller H; Diedrich A; Jordan J
    J Am Soc Hypertens; 2015 Oct; 9(10):794-801. PubMed ID: 26324745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelet methods for spike detection in mouse renal sympathetic nerve activity.
    Brychta RJ; Tuntrakool S; Appalsamy M; Keller NR; Robertson D; Shiavi RG; Diedrich A
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):82-93. PubMed ID: 17260859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance analysis of stationary and discrete wavelet transform for action potential detection from sympathetic nerve recordings in humans.
    Salmanpour A; Brown LJ; Shoemaker JK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2932-5. PubMed ID: 19163320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of wavelet-based action potential detection from the NeuroAmp and the Iowa Bioengineering Nerve Traffic Analysis system.
    Thrall SF; D'Souza AW; Abrahamson-Durant B; Vianna LC; Limberg JK; Macefield VG; Foster GE
    J Neurophysiol; 2024 Jun; 131(6):1168-1174. PubMed ID: 38629146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale correlation of wavelet coefficients approach to spike detection.
    Yang C; Olson B; Si J
    Neural Comput; 2011 Jan; 23(1):215-50. PubMed ID: 20964544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurophysiological analysis of target-related sympathetic pathways--from animal to human: similarities and differences.
    Jänig W; Häbler HJ
    Acta Physiol Scand; 2003 Mar; 177(3):255-74. PubMed ID: 12608996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data.
    Lieb F; Stark HG; Thielemann C
    J Neural Eng; 2017 Jun; 14(3):036013. PubMed ID: 28272020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelet-based processing of neuronal spike trains prior to discriminant analysis.
    Laubach M
    J Neurosci Methods; 2004 Apr; 134(2):159-68. PubMed ID: 15003382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for unsupervised classification of multiunit neural signal recording under low signal-to-noise ratio.
    Kim KH; Kim SJ
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):421-31. PubMed ID: 12723053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The variability of muscle nerve sympathetic activity in resting recumbent man.
    Sundlöf G; Wallin BG
    J Physiol; 1977 Nov; 272(2):383-97. PubMed ID: 592196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering.
    Quiroga RQ; Nadasdy Z; Ben-Shaul Y
    Neural Comput; 2004 Aug; 16(8):1661-87. PubMed ID: 15228749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-unit analysis of sympathetic nervous discharges in patients with panic disorder.
    Lambert E; Hotchkin E; Alvarenga M; Pier C; Richards J; Barton D; Dawood T; Esler M; Lambert G
    J Physiol; 2006 Feb; 570(Pt 3):637-43. PubMed ID: 16308348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal filtering for spike sorting of multi-site electrode recordings.
    Vollgraf R; Munk M; Obermayer K
    Network; 2005 Mar; 16(1):85-113. PubMed ID: 16350435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike detection using the continuous wavelet transform.
    Nenadic Z; Burdick JW
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):74-87. PubMed ID: 15651566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.