These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 12617588)
1. Comparative characterization of peanuts grown by aquatic floating cultivation and field cultivation for seed and resveratrol production. Liu CD; Wen YY; Chiou JM; Wang KH; Chiou RY J Agric Food Chem; 2003 Mar; 51(6):1582-5. PubMed ID: 12617588 [TBL] [Abstract][Full Text] [Related]
2. Germination of peanut kernels to enhance resveratrol biosynthesis and prepare sprouts as a functional vegetable. Wang KH; Lai YH; Chang JC; Ko TF; Shyu SL; Chiou RY J Agric Food Chem; 2005 Jan; 53(2):242-6. PubMed ID: 15656656 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis enhancement and antioxidant and anti-inflammatory activities of peanut (Arachis hypogaea L.) arachidin-1, arachidin-3, and isopentadienylresveratrol. Chang JC; Lai YH; Djoko B; Wu PL; Liu CD; Liu YW; Chiou RY J Agric Food Chem; 2006 Dec; 54(26):10281-7. PubMed ID: 17177571 [TBL] [Abstract][Full Text] [Related]
4. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
5. In vitro absorption of dietary trans-resveratrol from boiled and roasted peanuts in Caco-2 cells. Chukwumah Y; Walker L; Vogler B; Verghese M J Agric Food Chem; 2011 Dec; 59(23):12323-9. PubMed ID: 22059485 [TBL] [Abstract][Full Text] [Related]
7. Production and secretion of resveratrol in hairy root cultures of peanut. Medina-Bolivar F; Condori J; Rimando AM; Hubstenberger J; Shelton K; O'Keefe SF; Bennett S; Dolan MC Phytochemistry; 2007 Jul; 68(14):1992-2003. PubMed ID: 17574636 [TBL] [Abstract][Full Text] [Related]
8. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment. Stanciel K; Mortley DG; Hileman DR; Loretan PA; Bonsi CK; Hill WA HortScience; 2000 Feb; 35(1):49-52. PubMed ID: 11725790 [TBL] [Abstract][Full Text] [Related]
9. Burrower bugs (Heteroptera: Cydnidae) in peanut: seasonal species abundance, tillage effects, grade reduction effects, insecticide efficacy, and management. Chapin JW; Thomas JS J Econ Entomol; 2003 Aug; 96(4):1142-52. PubMed ID: 14503585 [TBL] [Abstract][Full Text] [Related]
10. Changes in the phytochemical composition and profile of raw, boiled, and roasted peanuts. Chukwumah Y; Walker L; Vogler B; Verghese M J Agric Food Chem; 2007 Oct; 55(22):9266-73. PubMed ID: 17924703 [TBL] [Abstract][Full Text] [Related]
11. Gas chromatography-mass spectrometry screening for phytochemical 4-desmethylsterols accumulated during development of Tunisian peanut kernels (Arachis hypogaea L.). Cherif AO; Trabelsi H; Ben Messaouda M; Kâabi B; Pellerin I; Boukhchina S; Kallel H; Pepe C J Agric Food Chem; 2010 Aug; 58(15):8709-14. PubMed ID: 20681661 [TBL] [Abstract][Full Text] [Related]
12. Biocompatibility of sweetpotato and peanut in a hydroponic system. Mortley DG; Loretan PA; Hill WA; Bonsi CK; Morris CE; Hall R; Sullen D HortScience; 1998 Dec; 33(7):1147-9. PubMed ID: 11795324 [TBL] [Abstract][Full Text] [Related]
13. Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut ( Liu H; Li H; Gu J; Deng L; Ren L; Hong Y; Lu Q; Chen X; Liang X Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29670063 [TBL] [Abstract][Full Text] [Related]
14. Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the U.S. peanut mini-core collection. Wang ML; Chen CY; Tonnis B; Barkley NA; Pinnow DL; Pittman RN; Davis J; Holbrook CC; Stalker HT; Pederson GA J Agric Food Chem; 2013 Mar; 61(11):2875-82. PubMed ID: 23379758 [TBL] [Abstract][Full Text] [Related]
15. An electrospray ionisation-mass spectrometry screening of triacylglycerols in developing cultivated and wild peanut kernels (Arachis hypogaea L.). Cherif AO; Leveque N; Ben Messaouda M; Kallel H; Moussa F Food Chem; 2013 Jun; 138(2-3):1095-100. PubMed ID: 23411219 [TBL] [Abstract][Full Text] [Related]
16. Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed. Kottapalli KR; Zabet-Moghaddam M; Rowland D; Faircloth W; Mirzaei M; Haynes PA; Payton P J Proteome Res; 2013 Nov; 12(11):5048-57. PubMed ID: 24094305 [TBL] [Abstract][Full Text] [Related]
17. Effect of ultraviolet doses in combined ultraviolet-ultrasound treatments on trans-resveratrol and trans-piceid contents in sliced peanut kernels. Potrebko I; Resurreccion AV J Agric Food Chem; 2009 Sep; 57(17):7750-6. PubMed ID: 19663442 [TBL] [Abstract][Full Text] [Related]
18. [Synthesis and degradation of the peanut storage proteins during seed development and germination]. Liao B; Lu CB; Wang L; Li HG; Hang SZ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Feb; 30(1):115-8. PubMed ID: 15583418 [TBL] [Abstract][Full Text] [Related]
19. Inheritance of a one-seeded pod trait in peanut. Branch WD J Hered; 2008; 99(2):221-2. PubMed ID: 18234702 [TBL] [Abstract][Full Text] [Related]
20. Root vs pod infection by root-knot nematodes on aflatoxin contamination of peanut. Timper P; Holbrook C; Wilson D Commun Agric Appl Biol Sci; 2007; 72(3):655-8. PubMed ID: 18399500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]