These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12617588)

  • 41. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages.
    Zhao C; Zhao S; Hou L; Xia H; Wang J; Li C; Li A; Li T; Zhang X; Wang X
    BMC Plant Biol; 2015 Aug; 15():188. PubMed ID: 26239120
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genotypic differences in the presence of hairs on roots and gynophores of peanuts (Arachis hypogaea L.) and their significance for phosphorus uptake.
    Wissuwa M; Ae N
    J Exp Bot; 2001 Aug; 52(361):1703-10. PubMed ID: 11479336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Available nitrogen and arginine deaminase activity in groundnut (Arachis hypogaea L.) fields after imidacloprid, diazinon, and lindane treatments.
    Singh J; Singh DK
    J Agric Food Chem; 2005 Jan; 53(2):363-8. PubMed ID: 15656673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms.
    Sobolev VS
    J Agric Food Chem; 2013 Feb; 61(8):1850-8. PubMed ID: 23387286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of stilbenoids and phenolic acids by the peanut plant at early stages of growth.
    Sobolev VS; Horn BW; Potter TL; Deyrup ST; Gloer JB
    J Agric Food Chem; 2006 May; 54(10):3505-11. PubMed ID: 19127717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of cooking methods on peanut allergenicity.
    Beyer K; Morrow E; Li XM; Bardina L; Bannon GA; Burks AW; Sampson HA
    J Allergy Clin Immunol; 2001 Jun; 107(6):1077-81. PubMed ID: 11398088
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimizing the extraction of phenolic antioxidants from peanut skins using response surface methodology.
    Ballard TS; Mallikarjunan P; Zhou K; O'Keefe SF
    J Agric Food Chem; 2009 Apr; 57(8):3064-72. PubMed ID: 19284759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mycobiota and mycotoxins in Brazilian peanut kernels from sowing to harvest.
    Gonçalez E; Nogueira JH; Fonseca H; Felicio JD; Pino FA; Corrêa B
    Int J Food Microbiol; 2008 Apr; 123(3):184-90. PubMed ID: 18295923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relationship between soil densities of Aspergillus species and colonization of wounded peanut seeds.
    Horn BW
    Can J Microbiol; 2006 Oct; 52(10):951-60. PubMed ID: 17110963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of transpiration efficiency in peanut (Arachis hypogaea L.) under drought using a lysimetric system.
    Ratnakumar P; Vadez V; Nigam SN; Krishnamurthy L
    Plant Biol (Stuttg); 2009 Nov; 11 Suppl 1():124-30. PubMed ID: 19778376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FAD2 gene mutations significantly alter fatty acid profiles in cultivated peanuts (Arachis hypogaea).
    Wang ML; Barkley NA; Chen Z; Pittman RN
    Biochem Genet; 2011 Dec; 49(11-12):748-59. PubMed ID: 21681577
    [TBL] [Abstract][Full Text] [Related]  

  • 52. trans-resveratrol content in commercial peanuts and peanut products.
    Sobolev VS; Cole RJ
    J Agric Food Chem; 1999 Apr; 47(4):1435-9. PubMed ID: 10563995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcriptome analysis of pod mutant reveals plant hormones are important regulators in controlling pod size in peanut (
    Wang Y; Zhang M; Du P; Liu H; Zhang Z; Xu J; Qin L; Huang B; Zheng Z; Dong W; Zhang X; Han S
    PeerJ; 2022; 10():e12965. PubMed ID: 35251782
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.
    Andreazza R; Bortolon L; Pieniz S; Giacometti M; Roehrs DD; Lambais MR; Camargo FA
    Biol Trace Elem Res; 2011 Dec; 143(3):1729-39. PubMed ID: 21286847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characteristics and composition of peanut oil prepared by an aqueous extraction method.
    Shi L; Lu JY; Jones G; Loretan PA; Hill WA
    Life Support Biosph Sci; 1998; 5(2):225-9. PubMed ID: 11541680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of thermal processing on the allergenicity of peanut proteins.
    Mondoulet L; Paty E; Drumare MF; Ah-Leung S; Scheinmann P; Willemot RM; Wal JM; Bernard H
    J Agric Food Chem; 2005 Jun; 53(11):4547-53. PubMed ID: 15913323
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A study of the relationships among consumer acceptance, oxidation chemical indicators, and sensory attributes in high-oleic and normal peanuts.
    Nepote V; Olmedo RH; Mestrallet MG; Grosso NR
    J Food Sci; 2009; 74(1):S1-8. PubMed ID: 19200116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitrogen application in pod zone improves yield and quality of two peanut cultivars by modulating nitrogen accumulation and metabolism.
    Li G; Guo X; Sun W; Hou L; Wang G; Tian R; Wang X; Qu C; Zhao C
    BMC Plant Biol; 2024 Jan; 24(1):48. PubMed ID: 38216909
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca)].
    Liang XY; Guo F; Zhang JL; Meng JJ; Li L; Wan SB; Li XG
    Ying Yong Sheng Tai Xue Bao; 2015 Dec; 26(12):3700-6. PubMed ID: 27112008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.