BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 12617629)

  • 1. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes.
    Amorín M; Castedo L; Granja JR
    J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled peptide tubelets with 7 A pores.
    Amorín M; Castedo L; Granja JR
    Chemistry; 2005 Nov; 11(22):6543-51. PubMed ID: 16106459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes.
    Brea RJ; Reiriz C; Granja JR
    Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New alpha,gamma-cyclic peptides-nanotube molecular caps using alpha,alpha-dialkylated alpha-amino acids.
    Reiriz C; Castedo L; Granja JR
    J Pept Sci; 2008 Feb; 14(2):241-9. PubMed ID: 18098331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The smallest alpha,gamma-peptide nanotubulet segments: cyclic alpha,gamma-tetrapeptide dimers.
    Amorín M; Brea RJ; Castedo L; Granja JR
    Org Lett; 2005 Oct; 7(21):4681-4. PubMed ID: 16209509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues.
    Rosenthal-Aizman K; Svensson G; Undén A
    J Am Chem Soc; 2004 Mar; 126(11):3372-3. PubMed ID: 15025434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembling properties of all γ-cyclic peptides containing sugar amino acid residues.
    Guerra A; Brea RJ; Amorín M; Castedo L; Granja JR
    Org Biomol Chem; 2012 Nov; 10(44):8762-6. PubMed ID: 23060041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction and dimerization energies in methyl-blocked alpha,gamma-peptide nanotube segments.
    García-Fandiño R; Castedo L; Granja JR; Vázquez SA
    J Phys Chem B; 2010 Apr; 114(15):4973-83. PubMed ID: 20353186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl-blocked dimeric alpha,gamma-peptide nanotube segments: formation of a peptide heterodimer through backbone-backbone interactions.
    Brea RJ; Amorín M; Castedo L; Granja JR
    Angew Chem Int Ed Engl; 2005 Sep; 44(35):5710-3. PubMed ID: 16080230
    [No Abstract]   [Full Text] [Related]  

  • 10. Folding control in cyclic peptides through N-methylation pattern selection: formation of antiparallel beta-sheet dimers, double reverse turns and supramolecular helices by 3alpha,gamma cyclic peptides.
    Amorín M; Castedo L; Granja JR
    Chemistry; 2008; 14(7):2100-11. PubMed ID: 18165949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling multiple fluorescent signal output in cyclic peptide-based supramolecular systems.
    Brea RJ; Vázquez ME; Mosquera M; Castedo L; Granja JR
    J Am Chem Soc; 2007 Feb; 129(6):1653-7. PubMed ID: 17243683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A heterocyclic peptide nanotube.
    Horne WS; Stout CD; Ghadiri MR
    J Am Chem Soc; 2003 Aug; 125(31):9372-6. PubMed ID: 12889966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes.
    Calvelo M; Vázquez S; García-Fandiño R
    Phys Chem Chem Phys; 2015 Nov; 17(43):28586-601. PubMed ID: 26443433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembling organic nanotubes based on a cyclic peptide architecture.
    Ghadiri MR; Granja JR; Milligan RA; McRee DE; Khazanovich N
    Nature; 1993 Nov; 366(6453):324-7. PubMed ID: 8247126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal ion binding of the alpha-gamma hybrid cyclic peptide nanotubes--a theoretical study based on the ONIOM method.
    Praveena G; Kolandaivel P
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):100-10. PubMed ID: 20215089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of a peptide nanotube with a water-membrane interface.
    Chipot C; Tarek M
    Phys Biol; 2006 Feb; 3(1):S20-5. PubMed ID: 16582462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the structure and stability of cyclic peptide based nanotubes using oligomeric approach: a computational chemistry investigation.
    Vijayaraj R; Sundar Raman S; Mahesh Kumar R; Subramanian V
    J Phys Chem B; 2010 Dec; 114(49):16574-83. PubMed ID: 21087024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on tertiary structural elements of beta-peptides: nanotubes formed from parallel-sheet-derived assemblies of beta-peptides.
    Beke T; Csizmadia IG; Perczel A
    J Am Chem Soc; 2006 Apr; 128(15):5158-67. PubMed ID: 16608352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic peptide-polymer complexes and their self-assembly.
    Bélanger D; Tong X; Soumaré S; Dory YL; Zhao Y
    Chemistry; 2009; 15(17):4428-36. PubMed ID: 19263443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha,gamma-cyclic peptide ensembles with a hydroxylated cavity.
    Reiriz C; Amorín M; García-Fandiño R; Castedo L; Granja JR
    Org Biomol Chem; 2009 Nov; 7(21):4358-61. PubMed ID: 19830283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.